
Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas Scribed by: Deepanway Ghosal, Wayne Lin

Lecture 9. Introduction to Multi-armed Bandits.

1 Introduction

Multi-armed bandit problems are examples of sequential decision problems where a fixed set of

resources has to be allocated between alternative choices to maximize the expected gain. This is

a classic framework with exploration-exploitation trade-off, where algorithms make decisions over

time under uncertainty. At the beginning, the properties of the different alternative choices are

unknown or partially known, and may become better understood as resources are allocated to those

choices at the time of each sequential decision. Hence, there is always this balance between staying

with the choice which gave the highest reward in the past and exploring new options which may

give better rewards in the future. Therefore, the goal is to design algorithms with the expectation

that they will be able to choose the optimal sequence of actions and consequently give us higher

rewards or payoffs.

More formally, the multi-arm bandit problem is said to be a sequential allocation problem

governed by a set of actions. At each time step an action is selected, and a reward is observed.

The objective is to maximize the total reward observed for a given time horizon (total number of

time steps). We first introduce the framework:

The player is given K different arms (actions) and a total time horizon of T . Both K & T are

known. At each time step t = 1, 2, .., T :

1. The player chooses an arm at.

2. A reward rt ∈ [0, 1] is observed.

In this lecture we will analyze stochastic bandits and adversarial bandits. We have the following

set of assumptions for stochastic bandits,

• The reward for each arm a ∈ [K] is independent and identically distributed (IID). For each

arm a there is a distribution Da over reals, called the reward distribution. This distribution

is unknown to the player. Each time arm a is chosen by the player, the reward is sampled

independently from the distribution Da.

• The player observes only the reward for the selected arm. Rewards for other arms, that were

not selected, are not observed.

1

This assumption of having IID rewards is a feature of stochastic bandits. However, in adversarial

bandits, instead of rewards, we have costs and the costs are not IIDs. In this case we have the

following assumptions,

• The costs for all arms and all rounds are chosen in advance by the adversary. Each time arm

a is chosen by the player in some round t, the cost ∈ [0, 1] for that arm a in that round t is

revealed to the player.

• The player observes only the cost for the selected arm. Costs for other arms, that were not

selected, are not observed.

Notation: We introduce the following set of notations first. Arms are denoted by a and the

set of all arms is A. Rounds are denoted by t, and the arm chosen at round t is denoted by at. The

mean reward of arm a is denoted by µ(a) = E[Da]. The arm with the best mean reward will then

have a reward of µ∗ = maxa∈A µ(a).

Now, the strategy of the player is to maximize the sum of all collected rewards. The best reward

is obtained when the optimal arm (the arm with the best mean reward µ∗) is chosen at every round.

However, any information about µ(a) or Da is unknown to the player at the very beginning. The

strategy of maximizing the sum of rewards, is therefore, equivalent to minimizing the regret, where

the regret is defined as,

R(T) = µ∗T −
T∑
t=1

µ(at)

Intuitively, the regret describes how far off are we from the optimal reward at each round and

sums up those differences over the whole time horizon T . Choosing a bad arm would mean we will

end up with a comparatively higher regret, whereas, choosing the best arm at every round would

mean we will have a regret of 0 and the highest possible reward. So, a strategy of minimizing the

regret would accomplish our goal of maximizing the reward.

Note that, R(T) is a random variable as the arm at chosen at round t is a random quantity and

may depend on the randomness in the rewards and the algorithm. So, for analysis we will consider

the expected value of the regret: E[R(T)]. We will analyze the asymptotic dependence of regret

E[R(T)] on the time horizon T .

2 Algorithms (Stochastic Setting)

In this section, we will present a number of different algorithms that the player can employ and we

will analyze the regret in terms of time horizon T and number of arms K.

2.1 Explore First Algorithm

The most simple strategy could be to first estimate the expected reward for all the arms and then

use the arm with the maximum estimated reward for the rest of the rounds. We do this by keeping

2

the initial few rounds only for exploration. In this phase, we explore all the arms uniformly. Then

in the next phase, we exploit the optimal arm for the rest of the rounds.

1. Exploration phase: try each arm N/K times.

2. Select the arm a∗ with the highest average reward (break ties arbitrarily).

3. Exploitation phase: play a∗ in all remaining T −N rounds.

The parameter N is fixed in advance as a function of T and K. We will choose it in a way such

that it minimizes the regret.

Let us denote the average reward for arm a after the exploration phase as µ̂a. We can use

Hoeffding inequality to bound the quantity |µ̂a − µa| as following,

Pr{|µ̂a − µa| ≤ r(a)} ≥ 1− 2

T 4
(1)

Ideally we would want the average reward after the exploration phase to be a good estimate of

the true expected reward. Hence the quantity |µ̂a − µa| should be small, and using the Hoeffding

inequality we can say that |µ̂a − µa| can be made smaller than bounding radius r(a) =
√

2K log T
N

with a large probability of at least 1− 2
T 4

Now we define the clean event to be a event where inequality (1) holds for all arms. It follows

that the probability of the bad event, which is the complement of the clean event, is going to be very

small. So, for the rest of the analysis we would only consider the clean event because it happens

with such a high probability.

We start the analysis in the case of a clean event. Suppose a∗ is the arm with the best true

expected reward. However, after the exploration phase, some other arm a 6= a∗ is chosen because

it has a higher average reward i.e. µ̂(a) > µ̂(a∗). From (1), we can thus say,

µa + r(a) ≥ µ̂a > µ̂(a∗) ≥ µ(a∗)− r(a∗)

or,

µ̂(a∗)− µa ≤ r(a) + r(a∗) = 2

√
2K log T

N
(2)

Now, the N rounds in exploration phase can be considered to contribute at most N (regret of

maximum 1 in each round) regret. For the exploitation phase, each round contributes µ̂(a∗) − µa
which is bounded by 2

√
2K log T

N from inequality (2). Hence the total regret after N rounds of

exploration and T −N rounds of exploitation,

R(T) ≤ N + 2

√
2K log T

N
(T −N)

≤ N +

√
8KT 2 log T

N

(3)

3

The two summands in inequality (3) are monotonically increasing and decreasing with N. Hence,

the sum can be minimized by making them approximately equal, which happens when we choose

N = 2T 2/3(K log T)1/3. We can now put this value of N back in (3) to obtain

R(T) ≤ 4T 2/3(K log T)1/3 (4)

To complete the result, we also need to analyze the case of the bad events. For bad events

the regret can be at most T for T rounds. Moreover, the bad event happens when at least one

arm doesn’t satisfy (1) which happens with probability K
T 4 (from union bound of probability) or

probability of O(1/T 3). Hence, the overall regret,

E[R(T)] = E[R(T)|clean event] ∗ Pr[clean event] + E[R(T)|bad events] ∗ Pr[bad events]

≤ 4T 2/3(K log T)1/3 + T ∗O(T−3)

≤ O(T 2/3(K log T)1/3)

(5)

Theorem 2.1 The explore first algorithm achieves regret O(T 2/3(K log T)1/3)

2.2 Epsilon Greedy Algorithm

The explore first algorithm performs very poorly in the exploration phase. A simple alternative

way to alleviate this would be to use a greedy method. In this case we use a greedy action selection

method to maximize current reward by exploiting current knowledge. In particular, we behave

greedily most of time by selecting the best arm from our knowledge of previous rounds, but once

in a while with a small probability ε we perform exploration by randomly selecting any one of

the possible arms. As a result, the exploration phase becomes more spread over time and we can

analyze the regret bounds even for small t. This is performed in the epsilon greedy algorithm.

for round t = 1, 2, .. T do

Toss a coin with success probability εt;

if success then

explore: choose an arm uniformly at random;

else

exploit: choose the arm with the highest observed average reward so far;

end

end

We analyze the regret bound of this algorithm by fixing round t. After round t, for each arm

a, following Hoeffding inequality, we will have,

Pr{|µ̂a − µa| ≤ ε} ≥ 1− 2e−2ε
2(tεt/K) (6)

4

Among the first t rounds, the exploration happens only in tεt rounds and hence, each arm on

average will be explored tεt/K times. Naturally, some arms will be chosen more in the exploitation

phase. For those arms, we will have even tighter probability bounds and hence, for the asymptotic

analysis we can proceed from (6).

Proceeding in a similar way as in (2), for arm at chosen at round t, we will have,

µ̂(a∗)− µat ≤ 2

√
2K log t

tεt
(7)

Now, the expected value of the regret only at the particular round of t,

E[R̃(t)] = Pr[coin toss success] ∗ 1 + Pr[coin toss failure] ∗ (µ̂(a∗)− µat)

= εt + (1− εt) ∗ 2

√
2K log t

tεt

≤ εt + 2

√
2K log t

tεt

(8)

In (8), E(R̃(t)) can be minimized by making the two summands approximately equal, resulting

in εt = t−1/3(K log t)1/3. Now, the overall regret can be bounded as,

E[R(t)] = E
[t∑

1

R̃(t)

]
≤ t ∗ E[R̃(t)]

≤ t2/3(K log t)1/3

(9)

Theorem 2.2 The epsilon greedy algorithm with exploration probabilities εt = t−1/3(K log t)1/3

achieves regret bound E[R(t)] ≤ O(t2/3(K log t)1/3) for each round t.

2.3 Upper Confidence Bound (UCB) Elimination Algorithm

2.3.1 Two-arm UCB elimination algorithm

The UCB elimination algorithm for two arms involves alternating between the arms until we find

out that one arm is, with very high probability, much better than the other, at which point we

abandon the inferior arm and pick the superior one forever more. We do this by defining upper

and lower confidence bounds (UCB/LCB) for for the mean µ(a) of each arm a for every t ≥ 2:

UCBt(a) := µ̂t(a) + rt(a), LCBt(a) := µ̂t(a) + rt(a),

where µ̂t(a) is the empirical mean reward for the arm observed thus far, and the confidence radius

rt(a) is defined by

rt(a) =

√
2 log T

nt(a)
,

5

where nt(a) = d t2e is the number of times the algorithm has tried arm a thus far. Observe that the

confidence radius rt(a) only changes at times when the arm a is pulled.

The UCB elimination algorithm for two players is then as follows:

1. Alternate between the two arms a, a′ until the two confidence intervals no longer intersect,

i.e. UCBt(a) < LCBt(a
′).

2. Eliminate the arm with the lower confidence interval (a), and use the arm (a′) forever more.

Let τ be the last round in which we had not invoked the elimination rule. To analyze the

expected regret E[R(T)] = µ∗(T)−
∑T

t=1 µ(at), where at is the arm chosen at time t, we condition

on the “clean” event ε that the true means for each arm fall within the confidence interval for every

time step, i.e.

ε =
{
∀t ∈ [τ], arm a : µ(a) ∈ [LCBt(a), UCBt(a)]

}
=
{
∀t ∈ [τ], arm a : |µ̂t(a)− µ(a)| ≤ rt(a)

}
.

Then by the law of total expectation, we have

E[R(T)] = E[R(T) | ε] · P[ε] + E[R(T) | ¬ε] · P[¬ε].

For the first term (clean event), the eliminated arm cannot be the best arm, and so from time

τ onwards we have zero expected regret. Now look at time τ , just before invoking the elimination

rule. At time τ the confidence intervals of the two arms still intersect, and thus we have (in the

clean event)

|µ(a)− µ(a′)| ≤ 2(rτ (a) + rτ (a′)).

Then, since nτ (a) = nτ (a′) = τ
2 , we have

rτ (a) = rτ (a′) =

√
4 log T

τ
.

Thus

E[R(T) | ε] = |µ(a)− µ(a′)| · τ
2

=
√
τ log T = O(

√
T log T),

and since P[ε] ≤ 1, we have that the first term,

E[R(T) | ε] · P[ε] = O(
√
T log T).

For the second term (unclean event), since the expected regret per timestep is ≤ 1, we have

E[R(T) | ¬ε] ≤ T. It then remains to bound P[¬ε]. By Hoeffding’s inequality, we have that, for any

6

given arm a and time t,

P
(
|µ̂t(a)− µ(a)| > rj(a)

)
≤ 2e−2ntrt(a)2

= 2e
−2nt(a)

2 log T
nt(a)

=
2

T 4
.

The only confidence radius and empirical mean changing at time t are those of arm at. (Thus,

at time t, the only way that the event can be made unclean is for µ(at) to move outside of its

confidence interval, since the confidence intervals for the other arms are unaffected.) Thus by

union bound,

P[¬ε] ≤
τ⋃
t=1

P
(
|µ̂t(at)− µ(at)| > rt(at)

)
≤ 2τ · 2

T 4

= O(
1

T 3
).

Thus the second term, E[R(T) | ¬ε] · P[¬ε] is O(1
T 3).

Combining the two terms, we then get

E[R(T)] = E[R(T) | ε] · P[ε] + E[R(T) | ¬ε] · P[¬ε] = O(
√
T log T).

Theorem 2.3 The UCB elimination algorithm for two arms achieves an expected regret of

O(
√
T log T).

2.3.2 UCB elimination algorithm when there are more than two arms

When there are more than two arms, the UCB elimination algorithm is as follows:

1. Initially set all arms to “active”.

2. Try all active arms once.

3. Deaactivate all arms a for which there exists an arm a′ with UCBt(a) < LCBt(a
′).

4. Repeat Steps 2 and 3 until there is one arm left, then pick it for the rest of time.

The following theorem can be shown, with proof similar to the two-arm case:

Theorem 2.4 The UCB elimination algorithm for K arms achieves an expected regret of

O(
√
KT log T).

7

2.4 Upper Confidence Bound (UCB) algorithm

The UCB algorithm involves keeping track of (empirical) confidence bounds on the true means of

each arm, and always picking the arm with the highest upper confidence bound (UCB). To do this,

we first try each arm once to get an empirical mean µ̂(a) for each arm a. Then, for any subsequent

time t, we, similar to the UCB elimination algorithm, define the upper/lower confidence bounds

for every arm a:

UCBt(a) := µ̂t(a) + rt(a), LCBt(a) := µ̂t(a) + rt(a),

where µ̂t(a) is the empirical mean reward for the arm observed thus far, and the confidence radius

rt(a) is defined by

rt(a) =

√
2 log T

nt(a)
,

where nt(a) is the number of times the algorithm has tried arm a thus far. Observe that the con-

fidence radius rt(a) only changes at times when the arm a is pulled.

Where the UCB algorithm differs from the UCB elimination algorithm in the previous section

is that, after going one round trying each arm so that we obtain a confidence interval for each arm,

the UCB algorithm just continues picking the arm that has the largest UCB at that time. The

motivation for this is that there are two possible reasons why an arm might have a high UCB: either

the empirical reward is large, which makes it likely that the true reward is large, or the confidence

radius is large, which means that the arm has not been explored much yet. Either reason makes

this arm worth trying, until its UCB drops below that of another arm.

The UCB algorithm is summarized as follows:

1. Try each arm once.

2. In each round t, pick the arm with the highest upper confidence bound, i.e. arg maxaUCBt(a).

The analysis for the UCB algorithm is similar to that for the UCB elimination algorithm in

the last section: we condition on the “clean” event ε that the true means always lie within the

confidence intervals, i.e.

ε =
{
∀t ∈ [τ], arm a : µ(a) ∈ [LCBt(a), UCBt(a)]

}
=
{
∀t ∈ [τ], arm a : |µ̂t(a)− µ(a)| ≤ rt(a)

}
,

and again, by the law of total expectation we have

E[R(T)] = E[R(T) | ε] · P[ε] + E[R(T) | ¬ε] · P[¬ε].

8

We now bound the second term (contribution by unclean event) first, because it is very similar

to the analysis for the UCB elimination algorithm. Again, the expected regret per timestep is ≤ 1,

so E[R(T) | ¬ε] ≤ T. It then remains to bound P[¬ε]. By Hoeffding’s inequality, we have again that,

for any given arm a and time t,

P
(
|µ̂t(a)− µ(a)| > rj(a)

)
≤ 2

T 4
.

Now denote by at the arm chosen at time t. The only confidence radius and empirical mean

changing at time t are those of arm at. Thus, by union bound, we have

P[¬ε] ≤
T⋃
t=1

P
(
|µ̂t(at)− µ(at)| > rt(at)

)
≤ 2T · 2

T 4

= O(
1

T 3
).

Thus again, the second term (the contribution from the unclean event),

E[R(T) | ¬ε] · P[¬ε] = O(
1

T 3
). (10)

Now we analyze the first term. (The contribution from the clean event.) Let a∗ be the optimal

arm. At time t, if we chose arm at, we have:

UCBt(at) ≥ UCBt(a∗),

by virtue of the fact that we chose at over a∗ at time t;

µ(at) ∈ [LCBt(at), UCBt(at)] =⇒ µ(at) + 2rt(at) ≥ UCBt(at);

and

UCBt(a
∗) ≥ µ(a∗),

which always holds in the clean event. Combining the last three inequalities, we have µ(at) +

2rt(at) ≥ µ(a∗), which can be rearranged to give

µ(a∗)− µ(at) ≤ 2rt(at).

But we have that

rt(at) =

√
2 log T

nt(at)
≤

√
2 log T

nT (at)
= rT (at),

so combining the last two inequalities we obtain

µ(a∗)− µ(at) ≤ 2rT (at). (11)

Thus the contribution of any arm a to the regret is[
µ(a∗)− µ(a)

]
nT (a) ≤ 2rT (a) · nT (a) = 2

√
2 log TnT (a),

9

and so we can bound the total regret in the clean event, E[R(T) | ε], by

2
√

2 log T
∑
a

√
nT (a).

Since
√
· is concave, we can use Jensen’s inequality to bound the sum

∑
a

√
nT (a) ≤ K

√∑
a nT (a)

K
=
√
TK.

Thus the total regret in the clean event, E[R(T) | ε], is bounded by

2
√

2 log T
√
TK = O(

√
KT log T).

It can be seen that this term far outweighs the unclean contribution in (10), and so we have the

following theorem:

Theorem 2.5 The UCB algorithm achieves regret

E
[
R(T)

]
≤ O(

√
KT log T).

The bound on the regret in Theorem 2.5 is good when arms perform close to each other, be-

cause there is no dependence on the differences in means for the different arms. But what if we

are guaranteed that the second-best performing arm is significantly worse than the best performing

arm a∗? It would seem that we should then be able to eliminate the bad-performing arms earlier.

Can we then obtain a better bound for the regret, with reduced dependence on T?

It turns out that we can. We can rearrange (11) to get, for every arm a with µ(a) < µ(a∗) (i.e.,

every arm whose picking at any time contributes to the expected regret), an upper bound on the

number of times we would try arm a in the clean event:

nT (a) ≤ 8 log T

[µ(a∗)− µ(a)]2
.

We can then rearrange this to get the contribution of arm a to the total regret (in the clean event):

nT (a) · [µ(a∗)− µ(a)] ≤ 8 log T

µ(a∗)− µ(a)
.

We can then bound the total regret in the clean event,∑
a:µ(a)<µ(a∗

nT (a)[µ(a∗)− µ(a)] ≤ O(log T)
∑

a:µ(a)<µ(a∗

1

µ(a∗)− µ(a)
.

Again, the contribution from the unclean event is negligible compared to this, and so we have the

following theorem:

10

Theorem 2.6 The UCB algorithm achieves regret

E
[
R(T)

]
≤ O(log T)

 ∑
a:µ(a)<µ(a∗)

1

µ(a∗)− µ(a)

 .

It should be noted that the bounds in Theorems 2.5 and 2.6 both hold, in any instance, for the

UCB algorithm. In a given scenario, the UCB algorithm will have a fixed performance (in expected

regret), but one bound may be tighter than the other (and hence more useful) depending on the

situation.

3 Algorithms (Adversarial Setting)

For the adversarial setting (given in the introduction), the adversary picks costs cta for each arm a

and each time t. Thus where at denotes the arm picked at time t, the regret is given by

R(T) =
∑
t∈[T]

ctat −min
a

∑
t∈[T]

cta,

and the objective of an algorithm is to minimize the expected regret, E[R(T)].

The only algorithm we shall analyze for the adversarial setting shall be the Exp3 algorithm.

3.1 Exp3 Algorithm

The Exp3 algorithm follows the Multiplicative Weights Update algorithm (MWUA):

1. Initialize w0
a = 1 for all a ∈ [K].

2. For t = 1, 2, . . . , T do

3. Choose arm a with probability pta proportional to wt−1a .

4. Only for the chosen arm a, do

5. wta = e−εc
t
a/p

t
awt−1a .

6. End For

7. End For

For our analysis, define, for every time t, the K-dimensional vector

ĉt =
ctat
ptat

eat .

11

Note that the a-th component of ĉt is given by

ĉta =

{
cta
pta

if at = a, i.e. arm a is chosen at time t,

0 otherwise.

We can then rewrite the update step in the algorithm (Step 5) as

wta = e−εĉ
t
awt−1a ∀ a ∈ [K].

Note also that

Ea∼pt

[
ĉt
]

=
∑
a∈[K]

pta ·
(
cta
pta

ea

)
=
∑
a∈[K]

ctaea

= ct,

and so at any time t, ĉt is an unbiased estimator for the true cost vector ct.

Now define

Lta :=

t∑
τ=1

ĉτa,

so that

wta = e−εL
t
a .

Define a potential function Φt by

Φt := −1

ε
log

∑
a∈[K]

wt−1a .

We have

Φt+1 − Φt = −1

ε
log

wta
wt−1a

= −1

ε
log

wt−1a · e−εĉta
wt−1a

= −1

ε
logEa∼pt

[
e−εĉ

t
a

]
.

Then, because e−x ≤ 1− x+ 1
2x

2, we have

Φt+1 − Φt = −1

ε
logEa∼pt

[
e−εĉ

t
a

]
≥ −1

ε
Ea∼pt

[
1− εĉta +

1

2
ε2(ĉta)

2

]
= −1

ε
log

(
1− Ea∼pt

[
εĉta −

1

2
ε2(ĉta)

2

])
,

12

and since −x ≥ log(1− x) we have

Φt+1 − Φt ≤ −
1

ε
log

(
1− Ea∼pt

[
εĉta −

1

2
ε2(ĉta)

2

])
≥ 1

ε
Ea∼pt

[
εĉta −

1

2
ε2(ĉta)

2

]
= Ea∼pt

[
ĉta
]
− 1

2
εEa∼pt

[
(ĉta)

2
]

=
∑
a∈[K]

ptaĉ
t
a −

1

2
ε
∑
a∈[K]

pta(ĉ
t
a)

2

=
∑
a∈[K]

ptaĉ
t
a −

1

2
ε
∑
a∈[K]

ctaĉ
t
a.

Taking expectation, we have

E[Φt+1 − Φt] ≥
∑
a∈[K]

ptac
t
a −

1

2
ε
∑
a∈[K]

(cta)
2 ≥

∑
a∈[K]

ptac
t
a −

Kε

2
.

Then, taking the telescopic sum, we have

ΦT+1 − Φ1 ≥
T∑
t=1

∑
a∈[K]

ptac
t
a −

KTε

2
. (12)

On the other hand, we have Φ1 = −1
ε logK, so, where a∗ is the optimal arm, we have

E[ΦT+1 − Φ1] ≤ E[LTa∗ − (−1

ε
logK)] =

T∑
t=1

cta∗ +
1

ε
logK. (13)

Combining (12) and (13), we then have that

E[R(T)] =
T∑
t=1

∑
a∈[K]

ptac
t
a −

T∑
t=1

cta∗ ≤
KTε

2
+

1

ε
logK.

We can then choose ε =
√

2 logK
TK , from which it would follow that the expected regret E[R(T)]

is O(
√
TK logK).

Theorem 3.1 The Exp3 algorithm with ε =
√

2 logK
TK achieves an expected regret of

O(
√
TK logK).

4 Conclusion

In these two lectures we were introduced to framework of multi-armed bandits, both the stochastic

setting, where each arm gives a reward according to a fixed distribution, and the adversarial setting,

13

where each arm at each time comes with a different cost, determined by an adversary. In both

settings, the aim was to design an algorithm that minimizes the expected regret.

For the stochastic setting, we analyzed the Explore First algorithm, the Epsilon Greedy algo-

rithm, the UCB Elimination algorithm, and the UCB algorithm. For large times T , it was found that

the UCB elimination algorithm and the UCB algorithm had a favorable bound of O(
√
KT log T)

on the expected regret.

For the adversarial setting, the Exp3 algorithm was analyzed. The expected regret was found

to be O(
√
TK logK).

14

	1 Introduction
	2 Algorithms (Stochastic Setting)
	2.1 Explore First Algorithm
	2.2 Epsilon Greedy Algorithm
	2.3 Upper Confidence Bound (UCB) Elimination Algorithm
	2.3.1 Two-arm UCB elimination algorithm
	2.3.2 UCB elimination algorithm when there are more than two arms

	2.4 Upper Confidence Bound (UCB) algorithm

	3 Algorithms (Adversarial Setting)
	3.1 Exp3 Algorithm

	4 Conclusion

