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Lecture 6. Accelerated Methods.

1 Introduction

In the previous lessons, we studied classic gradient descent, projected gradient descent and stochas-

tic gradient descent. We then investigate online learning and non-convex optimization. Moreover,

we’d like to know if we could do better in convex case from the perspective of convergence rate.

This leads to accelerated gradient descent, which is first proposed by Nesterov in 1983.

2 Gradient Descent (Recap)

2.1 Gradient Descent for L-smooth

Theorem 2.1 Let f : Rd → R be differentiable, convex (want to minimize) and L-smooth. Let

R = ‖x0 − x∗‖2 . It holds for T = 2R2L
ε

f (xT+1)− f (x∗) ≤ ε

with appropriately choosing α = 1
L .

Remarks:

• Speed of convergence is independent of dimension d.

• This result gives a rate of O
(
L
ε

)
.

2.2 Gradient Descent for µ-strongly Convex and L-smooth

Theorem 2.2 Let f : Rd → R be differentiable, µ-strongly convex (want to minimize) and L-

smooth. Let R = ‖x0 − x∗‖2 It holds for T = 2L
µ ln

(
R
ε

)
‖xT − x∗‖2 ≤ ε

with appropriately choosing α = 1
L

Remarks:

• Speed of convergence is independent of dimension d.

• This result gives a rate of O
(
L
µ log 1

ε

)
· κ := L

µ is called condition number.
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3 Definition

Definition 3.1 Let f : Rd → R be a differentiable function. The Accelerated Gradient Descent is

defined as follows:

1. Initialization x1, y1 = x1, stepsize η

2. For t = 1 . . . T do

3. yt+1 = xt − η∇f (xt)

4. xt+1 = (1 + γt) yt+1 − γtyt = yt+1 + γt (yt+1 − yt)
5. End For

Remarks:

• This method was introduced by Nesterov in1983. yt+1 − yt is called momentum.

• γt is a sequence independent of xt and γt ≥ 0 for all t.

Figure 1: Illustration of Nesterovs accelerated gradient descent from [2].

Figure 1 intuitively presents why the accelerated method proposed by Nesterov could speed up the

convergence of gradient descent.

4 Analysis for Smooth, Strongly-convex Functions

Theorem 4.1 (Strongly convex case) Let f : Rn → R be a twice differentiable function, L-

smooth and µ -strongly convex function. Assume that x∗ is the minimizer and set γt :=
√
κ−1√
κ+1

and
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η = 1
L . Then it holds that

f (yt+1)− f (x∗) ≤ L+ µ

2
‖x1 − x∗‖22 e

− t√
k ,

hence we reach ε-close in `2 after T :=
√

L
µ log

(
R2(L+µ)

ε

)
iterations.

Remarks:

• This result gives a rate of O
(√

L
µ log 1

ε

)
.

We would introduce and prove two claims before the proof of the above theorem.

Claim 4.2 (Approximation of f(x) from Below)

Φs+1 ≤ f(x) +

(
1− 1√

κ

)s
(Φ1(x)− f(x))

Proof:

We first define the following sequence of functions:

Φ1(x) = f (x1) + µ
2 ‖x− x1‖

2
2

Φs+1(x) =
(

1− 1√
κ

)
Φs(x) + 1√

k

(
f (xs) +∇f (xs)

> (x− xs) + µ
2 ‖x− xs‖

2
2

)
Then

Φs+1(x) =

(
1− 1√

κ

)
Φs(x) +

1√
κ

(
f (xs) +∇f (xs)

> (x− xs) +
µ

2
‖x− xs‖22

)
≤
(

1− 1√
κ

)
Φs(x) +

1√
κ
f(x) (from strong convexity)

= f(x) +

(
1− 1√

κ

)
(Φs(x)− f(x))

Therefore

Φs+1(x)− f(x) ≤
(

1− 1√
κ

)
(Φs(x)− f(x))

⇒ Φs+1(x)− f(x) ≤
(

1− 1√
κ

)s
(Φ1(x)− f(x)) (telescopic product)

⇒ Φs+1 ≤ f(x) +

(
1− 1√

κ

)s
(Φ1(x)− f(x))

Claim 4.3 (Approximation of f(x) from Above)

f (ys) ≤ min
x

Φs(x)
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Proof: For s = 1 we have f (y1) ≤ minx Φ1(x).

Φ1(x) = f (x1) +
µ

2
‖x− x1‖22 , x1 = y1

⇒ f (y1) ≤ Φ1(x)

⇒ f (y1) ≤ min
x

Φ1(x)

Set minx Φs(x) = Φ∗s.

f (ys+1) ≤ f (xs)−
1

2L
‖∇f (xs)‖22 (L-smoothness claim 2)

=

(
1− 1√

κ

)
f (ys) +

(
1− 1√

κ

)
(f (xs)− f (ys)) +

1√
κ
f (xs)−

1

2L
‖∇f (xs)‖22

≤
(

1− 1√
κ

)
Φ∗s +

(
1− 1√

κ

)
(f (xs)− f (ys)) +

1√
κ
f (xs)−

1

2L
‖∇f (xs)‖22 (FOC)

≤
(

1− 1√
κ

)
Φ∗s +

(
1− 1√

κ

)
∇f (xs)

> (xs − ys) +
1√
κ
f (xs)−

1

2L
‖∇f (xs)‖22

Let
(

1− 1√
κ

)
Φ∗s +

(
1− 1√

κ

)
∇f (xs)

> (xs − ys) + 1√
κ
f (xs) − 1

2L ‖∇f (xs)‖22 = A. Now we get

f (ys+1) ≤ A, then we would prove A ≤ Φ∗s+1.

According to the definition of Φ1(x) and Φs(x), we can get that

∇2Φ1(x) = µId

∇2Φs(x) =

(
1− 1√

κ

)
∇2Φs−1(x) +

1√
κ
µId

⇒ ∇2Φs(x) = µId.

Therefore, for some vs,

Φs(x) = Φ∗s +
µ

2
‖x− vs‖22 . (1)

Then

∇Φs+1(x) =

(
1− 1√

κ

)
∇Φs(x) +

1√
κ
∇f(xs) +

µ√
κ

(x− xs)

=

(
1− 1√

κ

)
∇(Φ∗s +

2

µ
‖x− vs‖22) +

1√
κ
∇f(xs) +

µ√
κ

(x− xs)

=

(
1− 1√

κ

)
µ(x− vs) +

1√
κ
∇f(xs) +

µ√
κ

(x− xs)

And vs+1 is a minimizer of Φs+1 (that is, ∇Φs+1(vs+1) = 0) We can find a relation for vs+1 and vs
by expanding ∇Φs+1 at vs+1.

∇Φs+1(vs+1) =

(
1− 1√

κ

)
µ(vs+1 − vs) +

1√
κ
∇f(xs) +

µ√
κ

(vs+1 − xs) = 0 (2)

⇒
√
κµvs+1 = (

√
κ− 1)µvs + µxs −∇f(xs) (3)

⇒ vs+1 =

(
1− 1√

κ

)
vs +

1√
κ
xs −

1

µ
√
κ
∇f(xs) (4)
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Evaluating Φs+1 at xs we have

Φs+1(xs) =

(
1− 1√

κ

)
Φs(xs) +

1√
κ
f(xs) (5)

⇒ Φ∗s+1 +
µ

2
‖xs − vs+1‖22 =

(
1− 1√

κ

)
Φ∗s +

µ

2

(
1− 1√

κ

)
‖xs − vs‖22 +

1√
κ
f(xs)(using equation (1))

(6)

According to equation (4), we can get that

xs − vs+1 =

(
1− 1√

κ

)
(xs − vs) +

1

µ
√
κ
∇f(xs) (7)

⇒ ‖xs − vs+1‖22 =

(
1− 1√

κ

)
‖xs − vs‖22 +

1

µ2κ
‖∇f(xs)‖22 −

2

µ
√
κ

(
1− 1√

κ

)
∇f(xs)

T (vs − xs)

(8)

Assume vs − xs =
√
κ(xs − ys), then by induction we can get that

vs+1 − xs+1 =

(
1− 1√

κ

)
vs +

1√
κ
xs −

1

µ
√
κ
∇f(xs)− xs+1

=

(
1− 1√

κ

)
(vs − xs) + xs −

1

µ
√
κ
∇f(xs)− xs+1

=

(
1− 1√

κ

)√
κ(xs − ys) + xs −

1

µ
√
κ
∇f(xs)− xs+1

=
√
κxs − (

√
κ− 1)ys −

√
κ

L
∇f(xs)− xs+1

=
√
κys+1 − (

√
κ− 1)ys − xs+1(def. of AGD)

=
√
κys+1 + (

√
κ+ 1)xs+1 − 2

√
κys+1 − xs+1(def. of AGD)

=
√
κ(xs+1 − ys+1).

Therefore, it’s true that

vs − xs =
√
κ(xs − ys). (9)

Plug equation (8) and (9) into equation (6), we can get that

Φ∗s+1 = A+
1

2
√
κ

(
1− 1√

κ

)
‖xs − ys‖22 ≥ A

Combine with f (ys+1) ≤ A, one obtains that f (ys+1) ≤ Φ∗s+1. The proof of claim 4.3 is done.

Proof of Theorem 4.1:

According to claim 4.2 and 4.3, we have

f (ys)− f (x∗) ≤ Φt (x∗)− f (x∗)

≤
(

1− 1√
κ

)t
(Φ1 (x∗)− f (x∗))

≤
(

1− 1√
x

)t (
f (x1)− f (x∗) +

µ

2
‖x1 − x∗‖22

)
(strong convexity)
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Since f (x1)− f (x∗) ≤ ∇f (x∗)> (x1 − x∗)︸ ︷︷ ︸
=0

+L
2 ‖x1 − x

∗‖22 , we get

f (ys)− f (x∗) ≤
(

1− 1√
κ

)t L+ µ

2
‖x1 − x∗‖22 ≤

L+ µ

2
‖x1 − x∗‖22 e

− t√
k

5 Analysis for Smooth Convex Functions

Theorem 5.1 (Smooth case) Let f : Rn → R be a twice differentiable function, L− smooth.

Assume that x∗ is the minimizer and set η = 1
L , γt := λt−1

λt+1
where λ0 = 0 and λt =

1+
√

1+4λ2t−1

2 .

Then it holds that

f (yt)− f (x∗) ≤
2L ‖x1 − x∗‖22

t2

hence we reach ε -close in value after T := (
√

2LR2

ε ) iterations.

Remarks:

• This result gives a rate of O(
√

L
ε )

Proof: Using the unconstrained version of Lemma 3.6 from [2] one obtains

f(ys+1)− f(ys) (10)

≤ ∇f(xs)
T (xs − ys)−

1

2L
‖∇f(xs)‖22 (11)

= L(xs − ys+1)
T (xs − ys)−

L

2
‖xs − ys+1‖22 (12)

Similarly we also get

f(ys+1)− f(x∗) ≤ L(xs − ys+1)
T (xs − x∗)−

L

2
‖xs − ys+1‖22 (13)

Now multiplying (12) by (λs−1) and adding the results to (13), one obtains with δs = f(ys)−f(x∗).

λsδs+1 − (λs − 1)δs ≤ L(xs − ys+1)
T (λsxs − (λs − 1)ys − x∗)−

L

2
λs ‖xs − ys+1‖22

Multiplying this equality by λs and using that by definition λ2s−1 = λ2s−λs, as well as the elementary

identity 2aT b− ‖a‖22 = ‖b‖22 − ‖b− a‖
2
2, one obtains

λ2sδs+1 − λ2s−1δs (14)

≤L
2

(2λs(xs − ys+1)
T (λsxs − (λs − 1)ys − x∗)− ‖λs(ys+1 − xs)‖22) (15)

=
L

2
(‖λsxs − (λs − 1)(ys − x∗)‖22 − ‖λsys+1 − (λs − 1)(ys − x∗)‖22) (16)
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Now remark that, by definition, one has

xs+1 = ys+1 + γ(ys − ys+1) (17)

⇔ λs+1xs+1 = λs+1ys+1 + (1− λs)(ys − ys+1) (18)

⇔ λs+1xs+1 − (λs+1 − 1)ys+1 = λsys+1 − (λs − 1)ys (19)

Putting together (16) and (19) one gets that µs = λsxs − (λs − 1)ys − x∗,

λ2sδs+1 − λ2s−1δ2s ≤
L

2
(‖µs‖22 − ‖µs+1‖22)

Summing these inequalities from s = 1 to s = t− 1 one obtains:

δt ≤
L

2λ2t−1
‖µ1‖22 .

By induction it is easy to see that λt−1 ≥ t
2 which concludes the proof.
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