
Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas Scribed by: Foo Lin Geng, Iosif Sakos, Ryann Sim

Lecture 3. Online Optimization and Learning.

1 Multiplicative Weights Update

1.1 The Simplified Expert’s Game

Definition 1.1 (The Simplified Expert’s Game) For each day t = 1, . . . , T , you have to

choose between alternatives A, B (e.g., rain or not rain).

1) Choose A or B according to some rule.

2) One of the alternatives is realized.

3) If you choose correctly you are not penalized otherwise you lose one point.

4) Imagine that there are n experts who on each day t, recommend either A or B.

Our objective is to perform close to the best expert! We define the following algorithm:

Algorithm 1: Weighted Majority

1 Initialize w0
i = 1 for all i ∈ [n].

2 for t = 1 . . . T do

3 if
∑

i choose Aw
t−1
i ≥

∑
i choose B w

t−1
i then

4 choose A, otherwise B.

5 end

6 for expert i that made a mistake do

7 wti = (1− ε)wt−1
i .

8 end

9 for expert i that did not make any mistakes do

10 wti = wt−1
i .

11 end

12 end

Remarks: The above algorithm performs almost as well as the ’best’ expert, which can also be

interpreted as the best ”choice” in hindsight. ε is the step-size (a small positive number), which

can be chosen later.

1

Theorem 1.1 (Weighted Majority) Let MT , MB
T be the total number of mistakes the algorithm

and best expert make until step T . It holds that

MT < 2

[
(1 + ε)MB

T +
log(n)

ε

]
(1)

Proof: Let M i
t be the total number of mistakes of the i-th expert at time t. We define

∆M i
t :=

{
M i
t −M i

t−1, if t > 0

0, otherwise

Notice that ∆M i
t is a indicator of whether the i-th expert made a mistake at time t, and as such

∆M i
t ∈ {0, 1} for all t ≥ 1. Using this notation we can define Mt := {i : ∆M i

t = 1} as the set of

all experts that did a mistake at time t. We are going to refer to the equivalent notions in regards

to our own mistakes with Mt and ∆Mt, respectively.

We can then describe the algorithm’s steps succinctly as follows:

wti =

{
(1−∆M i

t ε)w
t−1
i , if t > 0

1, if t = 0
(2)

and

∆Mt =

1, if
∑
i∈Mt

wt−1
i ≥

∑
i/∈Mt

wt−1
i and t ≥ 1

0, otherwise

(3)

Notice that by Equation 2 we have:

0 < wti = (1−∆M i
t ε)w

t−1
i < wt−1

i < . . . < w0 < 1, for all t ≥ 0

Now, we are going to define the potential function Φt :=
∑n

i=1w
t
i , and observe that:

i) Φ0 =
∑n

i=1w
0
i =

∑n
i=1 1 = n, and

ii) Φt =
∑n

i=1w
t
i <

∑n
i=1w

t−1
i = Φt−1 for all t > 0.

Suppose ∆Mt = 1 for some t ≥ 1. Then by Equation 3 we also have:∑
i∈Mt

wt−1
i ≥

∑
i/∈Mt

wt−1
i =⇒ 2

∑
i∈Mt

wt−1
i ≥

n∑
i=1

wt−1
i = Φt−1

=⇒
∑
i∈Mt

wt−1
i ≥ Φt−1

2

and, hence

Φt =

n∑
i=1

wti =

n∑
i=1

(1−∆M i
t ε)w

t−1
i = Φt−1 − ε

∑
i∈Mt

wt−1
i ≤ Φt−1 −

ε

2
Φt−1 = (1− ε

2
)Φt−1

2

By combining the above we finally have the following relationship about Φt:

Φt ≤ ∆Mt(1−
ε

2
)Φt−1 + (1−∆Mt)Φt−1 = (1−∆Mt

ε

2
)Φt−1 for all t > 0

Which at time T yields the following product form:

ΦT ≤
T∏
t=1

(1−∆Mt
ε

2
)Φ0

= (1− ε

2
)
∑T

t=1
∆Mtn

= (1− ε

2
)
∑T

t=1
(Mt−Mt−1)n

= (1− ε

2
)MT−M0n

= (1− ε

2
)MT n

Let B ∈ {1, . . . , n} be the best expert at time T . Then, it also holds:

ΦT =
n∑
i=1

wTi

> wTB

= (1− ε∆MB
T)wT−1

i

...

=
T∏
t=1

(1−∆MB
t ε)w

0
i

= (1− ε)
∑T

t=1
MB

t

= (1− ε)MB
T

And, thus, we have:

(1− ε

2
)MT n ≥ ΦT > (1− ε)MB

T =⇒ MT log(1− ε

2
) + log(n) > MB

T log(1− ε) (4)

To complete the proof we are going to rely on the following claim:

Claim 1.2 The following inequality holds if x ∈ [0, 0.684]:

−x− x2 < log(1− x) < −x

Proof: We first consider the the roots of the equation −x − x2 = log(1 − x). We find that the

inequality −x− x2 < log(1− x) holds when x ∈ [0, 0.684]. We then take the Taylor’s expansion of

the log term, which is −x− x2

2 −
x3

3 − The right inequality holds due to the non-negativity of
x2

2 + x3

3 + x4

4

3

Using the above claim, and for sufficiently small ε, Inequality 4 yields:

− ε

2
MT + log(n) > MT log(1− ε

2
) + log(n) > MB

T log(1− ε) > (−ε− ε2)MB
T

=⇒ MT < 2

[
(1 + ε)MB

T +
log(n)

ε

]

1.2 The Randomized Experts Game

Definition 1.2 (The Randomized Expert’s Game) For each day t = 1, . . . , T , you have to

choose between alternatives A, B (e.g., rain or not rain).

1) Choose A or B with some probability.

2) One of the alternatives is realized.

3) If you choose correctly you are not penalized otherwise you lose one point.

4) Imagine that there are n experts who on each day t, recommend either A or B.

The ‘right’ objective now is to perform close to the best expert — in expectation. The Randomized

Weighted Majority algorithm is defined in Algorithm 2.

Algorithm 2: Randomized Weighted Majority

1 Initialize w0
i = 1 for all i ∈ [n].

2 for t = 1 . . . T do

3 choose expert’s i recommendation with probability proportional to wt−1
i .

4 for expert i that made a mistake do

5 wti = (1− ε)wt−1
i .

6 end

7 for expert i that did not make any mistakes do

8 wti = wt−1
i .

9 end

10 end

Remarks: This algorithm is also known as Multiplicative Weights Update. Similar to the sim-

plified version, the ”randomized” algorithm performs almost as well as the ’best’ expert (fewest

mistakes). The only difference is that We now choose action i with probability pti =
wt−1

i∑
j w

t−1
j

. This

random choice of actions allows us to improve our bounds by a little.

4

Theorem 1.3 (Randomized Weighted Majority) Let MT , MB
T be the total number of mis-

takes the algorithm and best expert make until step T , respectively. It holds that

E[MT] < (1 + ε)MB
T +

log(n)

ε
(5)

Proof: The proof is similar to that of Theorem 1.1 and, hence, we are going to rely on the same

notation. To cope with algorithm’s probabilistic nature, we consider ∆Mt to be random variables,

such as:

∆Mt = ∆M i
t w.p. pti

Notice, since ∆Mt := Mt−Mt−1, t > 0, it follows that Mt are considered to be random variables as

well; however, note that ∆M i
t , i ∈ {1, . . . , n} are still known variables. Furthermore, by definition,

we have:

pti =
wt−1
i∑n

j=1w
t−1
j

=
wt−1
i

Φt−1

The RHS of Inequality 4 holds by the same reasoning; thus, we are going to concern ourselves with

the LHS. Specifically, we are going to prove that ΦT < eεE[MT]n which will conclude the proof,

since for sufficiently small ε we have:

eεE[MT]n > (1− ε)MB
T > (−ε− ε2)MB

T =⇒ E[MT] < (1 + ε)MB
T +

log(n)

ε

By definition we have:

Φt =
n∑
i=1

wti

=
n∑
i=1

(1−∆M i
t ε)w

t−1
i

=
n∑
i=1

(1−∆M i
t ε)Φt−1p

t
i

= (1− ε
n∑
i=1

∆M i
tp
t
i)Φt−1

= (1− εE[∆Mt])Φt−1

By Claim 1.2 we then have that for sufficiently small ε:

log(1− εE[∆Mt]) < −εE[∆Mt] =⇒ Φt < e−εE[∆Mt]Φt−1 for all t > 0

5

Which at time T yields:
ΦT < e−εE[∆MT]ΦT−1

...

<

T∏
t=1

e−εE[∆Mt]Φ0

= exp

(
−ε

T∑
t=1

E[∆Mt]

)
n

= exp

(
−εE

[
T∑
t=1

∆Mt

])
n

= exp

(
−εE

[
T∑
t=1

(Mt −Mt−1)

])
n

= e−εE[MT−M0]n

= e−εE[MT]n

1.3 The General Setting

Definition 1.3 (The General Setting) At each time step t = 1 . . . T .

1) Player chooses xt ∈ K ⊂ Rn (some closed convex set).

2) Adversary chooses `t ∈ F (set of convex functions).

3) Player suffers loss `t(xt) and observes feedback.

The Player’s goal is to minimize the (time average) Regret, that is:

1

T

[
T∑
t=1

`(xt)−min
u∈K

T∑
t=1

`(u)

]
(6)

If Regret → 0 as T →∞, the algorithm is called no-regret.

6

1.3.1 Convex Optimization as Special Case

Observe that if the adversary chooses a single ` ∈ F function such that `1 = · · · = `T = ` then

Regret can be reduced to:

1

T

[
T∑
t=1

`t(xt)−min
u∈K

T∑
t=1

`t(u)

]
=

1

T

[
T∑
t=1

`(xt)−min
u∈K

T∑
t=1

`(u)

]

=
1

T

[
T∑
t=1

`(xt)−
T∑
t=1

min
u∈K

`(u)

]

=
1

T

T∑
t=1

`(xt)−
1

T

T∑
t=1

`(x∗)

=
1

T

T∑
t=1

`(xt)− `(x∗)

Where x∗ := minu∈K `(u) is the global minimizer of `—which is well-defined, since ` is a convex

function. Since K is convex we also have that 1
T

∑T
t=1 xt ∈ K Hence, by Jensen’s Inequality, it

follows that:

1

T

T∑
t=1

`(xt)− `(x∗) ≥ `

(
1

T

T∑
t=1

xt

)
− `(x∗) ≥ 0, (Since x∗ is a global minimizer of `)

Assuming xt, t ∈ {0, . . . , T} are generated from a no-regret algorithm it follows that Regret → 0

as T →∞; which implies that:

0 = lim
T→∞

[
1

T

T∑
t=1

`(xt)− `(x∗)

]
≥ lim

T→∞

[
`

(
1

T

T∑
t=1

xt

)
− `(x∗)

]
≥ 0

=⇒ lim
T→∞

`

(
1

T

T∑
t=1

xt

)
= `(x∗)

(7)

Thus, the problem of optimizing a convex function ` can be reduced to a regret-minimization

problem (if we are using a no-regret algorithm).

1.3.2 Regret for Expert’s Problem

We now go back to the Expert’s Problem as defined earlier. What can we say about the Regret of

our previous algorithms? The goal here is once again to minimize the time average Regret, which

in this case is:
E[MT]−#mistakes best expert

T
(8)

7

Explanation: We choose xt as the probability distribution at time t over the experts and `t is

their probability of making a mistake. Recall that we have:

E[MT] ≤ (1 + ε)MB
T +

log(n)

ε
(9)

By choosing ε =

√
log(n)
T , we get average regret 2

√
log(n)
T . Can we do better? Nope. This is because

of the probabilistic argument below (we argue that we can do no better, because we decide our

move (A or B) in hindsight).

Lemma 1.4 Consider just two experts that choose one A and B respectively at all times. The

adversary chooses uniformly at random A or B. The expected number of mistakes of an online

algorithm is T
2 . One of the two fixed strategies will have, with a fixed high probability: T

2 −Θ(
√
T).

Proof: Let T be the number of times that the experts make choices, and let A(T) be the number

of times A is chosen. The probability of an expert choosing A is p = 1
2 . We also note that the

expected number of A chosen, E[A(T)] = pT .

To start, we use Hoeffding’s inequality to bound the probability of obtaining extreme values. For

some ε > 0,

Pr(A(T) ≤ (p− ε)T) ≤ e−2ε2n

Taking the complement of the set, we get:

Pr(A(T) > (p− ε)T) > 1− e−2ε2n

As we want a fixed value for the probability, we set the RHS to 0 by setting ε = 1√
T

.

Pr(A(T) > pT −
√
T) > 1− e−2

We observe that, with a fixed probability, A(T) is lower-bounded by (Θ(pT −
√
T)). Since pT is

constant, we conclude by saying that with a fixed probability, A(T) = pT −Θ(
√
T).

Remarks: This means that the long run average regret, A(T)
T is equal to p−Θ(1√

T
). This scales

similarly to the regret of the Randomized Expert’s algorithm described above. Hence the expression

for the regret found above is the best we can do for the Expert’s problem.

2 Online Gradient Descent

Let f : Rn → R be a convex function that is differentiable and L-Lipschitz in some compact convex

set X of diameter D. Online GD is defined:

8

Algorithm 3: Online Gradient Descent

1 Initialize at some x0.

2 for t := 1 to T do

3 choose xt and observe `t(xt).

4 yt = xt − αt∇`t(xt).
5 xt+1 =

∏
X (yt).

6 end

7 Regret: 1
T

(∑T
t=1 `t(xt)−minx

∑T
t=1 `t(x)

)

Theorem 2.1 (Online Gradient Descent) Let `t : Rn → R, t = 1, . . . , T be convex functions

that are differentiable and L-Lipschitz in some compact convex set X of diameter D. It holds that:

1

T

(
T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x)

)
≤ 3

2

LD√
T

(10)

by appropriately choosing αt = D
L
√
t
.

Proof: Let x∗ = arg minx∈X
∑T

t=1 `t(x), and note x∗ is well-defined for any compact set X . We,

now, choose t ∈ {1, . . . , T}. Then, by Online Gradient Descent’s definition, we have:

xt =
∏
X

(yt) =⇒ xt ∈ X

Hence, since `t is differentiable in X and X is a convex set, it follows by the First-Order Condition

of Convexity that:

`t(x
∗) ≥ `t(xt) +∇`t(xt)ᵀ(x∗ − xt) =⇒ `t(xt)− `t(x∗) ≤ ∇`t(xt)ᵀ(xt − x∗)

Furthermore, by Online Gradient Descent’s definition, we also have that yt = xt − αt∇`t(xt) for

αt = D
L
√
t
> 0; thus, by substitution on above, we have:

`t(xt)− `t(x∗) ≤
1

αt
(xt − yt)ᵀ(xt − x∗)

=
1

2αt
(‖xt − yt‖22 + ‖xt − x∗‖22 − ‖yt − x∗‖22)

=
1

2αt
(‖xt − x∗‖22 − ‖yt − x∗‖22) +

1

2αt
‖xt − (xt − αt∇`t(xt))‖22

=
1

2αt
(‖xt − x∗‖22 − ‖yt − x∗‖22) +

αt
2
‖∇`t(xt)‖22

We should continue by applying the following facts, which can be verified in previous notes:

i) ‖yt − x∗‖2 ≥ ‖
∏
X (yt)− x∗‖2, and

9

ii) ‖∇`t(xt)‖2 ≤ L.

Where the former follows by the convexity of X , while the later holds due the Lipschitz property

of `t. Thus, the previous inequality now yields:

`t(x
t)− `t(x∗) ≤

1

2αt
(‖xt − x∗‖22 − ‖

∏
X (yt)− x∗‖22) +

αtL
2

2

=
1

2αt
(‖xt − x∗‖22 − ‖xt+1 − x∗‖22) +

αtL
2

2

Consequently by taking the sum for t ∈ {1, . . . , T} we have:

T∑
t=1

(`t(x
t)− `t(x∗))

≤
T∑
t=1

[
1

2αt
(‖xt − x∗‖22 − ‖xt+1 − x∗‖22)

]
+
L2

2

T∑
t=1

αt

=
1

2α1
‖x1 − x∗‖22 +

T∑
t=2

[
‖xt − x∗‖22

(
1

2αt
− 1

2αt−1

)]
− 1

2αT+1
‖xT+1 − x∗‖22 +

L2

2

T∑
t=1

αt

≤ 1

2α1
‖x1 − x∗‖22 +

T∑
t=2

[
‖xt − x∗‖22

(
1

2αt
− 1

2αt−1

)]
+
L2

2

T∑
t=1

αt

However, since X has diameter D, it holds ‖xt − x∗‖2 ≤ D for all t ∈ {1, . . . , T}, and, hence:

T∑
t=1

(`t(x
t)− `t(x∗)) ≤

1

2α1
D2 +

T∑
t=2

[
D2

(
1

2αt
− 1

2αt−1

)]
+
L2

2

T∑
t=1

αt

= D2

[
1

2α1
+

T∑
t=2

(
1

2αt
− 1

2αt−1

)]
+
L2

2

T∑
t=1

αt

= D2

(
1

2α1
+

1

2αT
− 1

2α1

)
+
L2

2

T∑
t=1

αt

=
D2

2αT
+
L2

2

T∑
t=1

αt

=
D2

2 D
L
√
T

+
L2

2

T∑
t=1

D

L
√
t

=
LD

2

(
√
T +

T∑
t=1

1√
t

)
To complete the proof we are going to rely on the following Lemma:

Lemma 2.2
T∑
t=1

1√
t
≤ 2
√
T

10

Proof: We first observe that: ∫ T

t=0

1√
t

= 2
√
T

We see that
∑T

t=1
1√
t

is just the Riemann sum approximation of the integral
∫ T
t=0

1√
t

by taking

value to be the right of the intervals. Since 1√
t

is a decreasing function in t, the Riemann sum

approximation is a lower bound to the actual value, hence:

T∑
t=1

1√
t
≤
∫ T

t=0

1√
t

= 2
√
T

Thus, the above inequality yields:

T∑
t=1

(`t(x
t)− `t(x∗)) ≤

3LD

2

√
T =⇒

T∑
t=1

`t(x
t)−

T∑
t=1

`t(x
∗) ≤ 3LD

2

√
T

=⇒ 1

T

(
T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x)

)
≤ 3

2

LD√
T

Remarks: If we want error ε, we need T = Θ(L
2D2

ε2
) iterations (same as GD for L-Lipschitz).

3 MWUA General Setting

As defined in Algorithm 2, the MWUA algorithm is a generalized version of the Randomized

Weighted Majority Algorithm, which is defined in Algorithm 4:

Algorithm 4: MWUA

1 Initialize w0
i = 1 for all i ∈ [n].

2 for t = 1 . . . T do

3 choose action i with probability proportional to wt−1
i .

4 for each action i do

5 wti = (1− ε)ctiwt−1
i .

6 end

7 end

11

Remarks: This is a generalized form of the Randomized Weighted Majority Algorithm, where

2 things are slightly different. Firstly, instead of a cost of 1/0 for correct/incorrect actions, each

action i at time t has a cost cti (which is chosen by the adversary). Secondly, we set ε :=

√
log(n)
T .

Theorem 3.1 (MWUA) Let OPT = mini
∑T

t=1 c
t
i

E[costMWUA] ≤ OPT + εT +
log n

ε

Proof: We first define the potential function φt =
∑

iw
t
i . Let the best action (in hindsight) be

i∗. Then, we have:

φT > wTi∗ = (1− ε)OPT (11)

Now, we look at φt+1:

φt+1 =
∑
i

wt+1
i =

∑
i

wti(1− ε)c
t
i

=
∑
i

φtp
t+1
i (1− ε)cti

= φt
∑
i

pt+1
i (1− ε)cti

≤ φt
∑
i

pt+1
i (1− ε · cti)

= φt(1− ε · E[cost(t)MWUA])

≤ φte−εE[cost(t)MWUA]

Note that for the first inequality, we used the fact that (1− ε)x ≤ 1− εx for x ∈ [0, 1], ε ∈ [0, 1/2].

Then, similarly to previous proofs, we can take the telescopic product of the above inequality to

obtain:

φT ≤ φ1e
−εE[cost(t)MWUA] (12)

Therefore, by substituting in 11, we obtain:

(1− ε)OPT ≤ ne−εE[cost(t)MWUA]

OPT log(1− ε) ≤ log(n)− εE[cost(t)MWUA]

By 1.2, we can express the above inequality as:

OPT (−ε− ε2) ≤ log(n)− εE[cost(t)MWUA]

E[cost(t)MWUA] ≤ log(n)

ε
+ (1 + ε)OPT

Plugging in ε =

√
log(n)
T gives

1

T
(E[cost(t)MWUA]−OPT) ≤ 1

T

log(n)

ε
+ ε

OPT

T

=

√
log(n)

T
+

√
log(n)

T
· OPT

T

12

However, we note that OPT is upper bounded by T. Hence:

1

T
(E[cost(t)MWUA]−OPT) ≤ 2

√
log(n)

T

3.1 Examples

3.1.1 Solving Linear Programs

Suppose we are given a linear program in the standard form

Ax ≥ b
s.t. x ≥ 0

Goal: Check Feasibility. Compute a vector x∗ ≥ 0 such that for some ε > 0 we get

a>i x
∗ ≥ bi − ε, for all i

Oracle Access: Given a vector c and scalar d, does there exist a x ≥ 0 such that c>x ≥ d? This

is a condition that can be used to check for feasibility.

Claim 3.2 Using the above and binary search, one can solve any linear program using MWUA!

Setting: Consider every constraint a>i x− bi as an action.

• Choose ci(x) =
a>i x−bi

ρ with ρ chosen such that |ci| ≤ 1.

• Initialize w0
i = 1 (uniform distribution).

• For each t = 1 . . . T , ask the oracle if there exists a point x ≥ 0 such that c>x ≥ d where

c =
∑
i

ptiai, d =
∑
i

ptibi

.

If the answer is no, the linear problem is infeasible. If the answer is yes (the oracle returns an xt),

each action suffers cost cti = ci(x
t).

From Theorem 3.1, we obtain the following inequality:

0 ≤ 1

T

∑
t

∑
i

pti(a
>
i x

t
i − bi) ≤

1

T

∑
t

∑
i

p∗i (a
>
i x

t
i − bi) + 2ρ

√
log(m)

T
(13)

13

where p∗ is the optimal hindsight. Note that the RHS is at most (for all i)

1

T

∑
t

(
a>i x

t
i − bi

)
+ 2ρ

√
log(m)

T
=

1

T
a>i
∑
t

xti − bi + 2ρ

√
log(m)

T
(14)

Therefore, by choosing T = 4ρ2 log(m)
ε2

and x̃ = 1
T

∑
t x

t we get that a>i x̃ − bi + ε ≥ 0 for all i. In

other words, we have found a feasible solution x̃ to the linear program!

3.1.2 MWUA and Zero-Sum Games

Definition 3.1 (Payoff Matrix) Consider a matrix A (called a payoff matrix). Aij denotes the

amount of money player x pays to player y. For example, Rock-Paper-Scissors has the following

payoff matrix:

A =

 0 1 −1

−1 0 1

1 −1 0

Definition 3.2 (Nash Equilibrium) A vector (x∗, y∗) is called a NE if

x∗>Ay∗ ≥ x∗>Aỹ for all ỹ ∈ ∆ and x∗>Ay∗ ≤ x̃>Ay∗ for all x̃ ∈ ∆

To compute the Nash Equilibrium of a game, we can let the players run MWUA against each other!

Algorithm 5: MWUA for Zero-Sum Games

1 Initialize p0
i,x = 1/n, p0

i,y = 1/n for all i (both players, uniform)

2 for t=1. . . T do

3 Player x chooses i with probability pti,x and y with pti,y respectively

4 for each action i do

5 pti,x = pt−1
i,x

(1−ε)(Apt−1
y)i

Zx

6 pti,y = pt−1
i,y

(1+ε)(A
>pt−1

x)i

Zy

7 end

8 end

Theorem 3.3 (MWUA) Let x̃ = 1
T

∑
t p
t
x and ỹ = 1

T

∑
t p
t
y. Assume that A has entries in [−1, 1]

and T = Θ
(

logn
ε2

)
. It holds that (x̃, ỹ) is an ε-approximate NE that is

x̃>Aỹ ≤ x′>Aỹ + ε and x̃>Aỹ ≥ x>Ay′ − ε

Proof: Exercise 6

14

Remark: The above theorem is not true in general for last iterates! Indeed, in standard

Matching Pennies game with the payoff matrix shown below, the strategy profile is shown to

diverge almost surely to the boundary, as seen in Figure 1.

A =

[
−1 1

1 −1

]

Figure 1: Phase Portrait of Matching Pennies using MWUA

4 General Family of No-Regret Algorithms

4.1 Follow the Leader

Definition 4.1 (Follow The Leader (FTL)) Let fk : Rn → R, k = 0, . . . , T be convex func-

tions, differentiable in some convex set K ⊂ Rn. FTL is defined in Algorithm 6.

Algorithm 6: Follow the Leader

1 Initialize at some x0.

2 for t := to T do

3 Choose xt = arg minx∈K
∑t−1

k=0 fk(x)

4 end

Remark 4.2 FTL is possible to perform poorly under certain conditions. Specifically FTL is not

a no-regret algorithm. To see this consider the following example:

Example 4.1 Let us consider the case of K = ∆2 (the 2-dimensional Simplex ⊂ R2) and fk(x) =

15

Xᵀ`k for all k ∈ {0, . . . , T}, where `k are chosen as by an adversary as follows:

`0 = (0,
1

2
)

`1 = (1, 0)

`2 = (0, 1)

...

`T =

{
(1, 0), if T is odd

(0, 1), otherwise

Then given x0 = (1
2 ,

1
2), FTL yields the following:

x1 = arg min
x∈∆2

xᵀ`0 = (1, 0)

x2 = (0, 1)

...

xT =

{
(1, 0), if T is odd

(0, 1), otherwise

Recall, that the regret’s formula:

1

T

[
T∑
k=0

fk(xk)− min
u∈∆2

T∑
k=0

fk(u)

]
=

1

T

[
T∑
k=0

xᵀk`k − min
u∈∆2

T∑
k=0

uᵀ`k

]
≈ 1

T

[
T − T

2

]
=

1

2

where we used symmetry of {`0, . . . , `T } to derive that arg minu∈∆2

∑T
k=0 u

ᵀ`k = (1
2 ,

1
2). Notice

that Regret→ 1
2 as T → inf, which implies that FTL is not a no-regret algorithm.

4.2 Follow the Regularized Leader

Definition 4.3 (Follow the Regularized Leader) Let fk : Rn → R be convex functions for all

k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is

defined:

Algorithm 7: Follow the Regularized Leader

1 Initialize at some x0.

2 for t := to T do

3 Choose xt = argminx∈K

{
εt−1 ·

∑t−1
k=0 fk(x) +R(x)

}
4 end

16

Claim 4.2 When R(x) = 1
2‖x‖

2, fk(x) = x>ck (linear in x), and K = Rn , we have Online GD

where step-size α is fixed.

Proof: We first substitute the terms into FTRL.

xt = argminx∈K

{
εt−1 ·

t−1∑
k=0

fk(x) +R(x)

}

= argminx∈K

{
εt−1 ·

t−1∑
k=0

xT ck +
1

2
||x||2

}

Then, we take the derivative and set to zero. This will give us a minimum point, because the term

is convex.

∂

∂xi

{
εt−1 ·

t−1∑
k=0

xT ck +
1

2
||x||2

}
= 0

εt−1 ·
t−1∑
k=0

ck,i + xi = 0

xi = −εt−1 ·
t−1∑
k=0

ck,i

Thus, for all i, we choose xt,i =
∏
K

{
−εt−1 ·

∑t−1
k=0 ck,i

}
, which is the projection of the minimum

point into the set K.

For online GD, we have the stepwise iteration xt =
∏
K {xt−1 − αt−1∇ft−1(xt−1)}. Substitut-

ing fk(x) = xT ck, we get xt =
∏
K {xt−1 − αt−1(ct−1)}.

Taking the telescopic sum, we get xt =
∏
K

{
x0 −

∑t−1
k=0 αkck

}
. This is allowed because K = Rn,

and is thus a linear subspace.
∏
KA+

∏
KB =

∏
K(A+B).

If we set x0,i = 0 for all i and αk to some constant ε for all k, we get:

xt,i =
∏
K

{
−ε ·

t−1∑
k=0

ck,i

}
(15)

This is similar to the result obtained from FTRL.

Claim 4.3 When R(x) = −
∑
xilogxi (entropy) and fk(x) = x>ck (linear in x), we have MWUA.

Proof: First, we describe MWUA. For MWUA, the stepwise iteration for each action i is:

wt,i = (1− δ)c(t−1),iw(t−1),i

17

logwt,i = c(t−1),i · log(1− δ) + logw(t−1),i

Taking the telescopic sum and since w0,i = 1:

logwt,i = log(1− δ) ·
t−1∑
k=0

ck,i + logw0,i

= log(1− δ) ·
t−1∑
k=0

ck,i

Next, we substitute the terms into FTRL.

xt = argminx∈K

{
εt−1 ·

t−1∑
k=0

fk(x) +R(x)

}

= argminx∈K

εt−1 ·
t−1∑
k=0

xT ck −
n∑
j=0

xj log(xj)

Then, we take the derivative and set to zero. Because entropy is a convex function, the root of this

derivative will give us a minimum point.

∂

∂xi

εt−1 ·
t−1∑
k=0

xT ck −
n∑
j=0

xj log(xj)

 = 0

εt−1 ·
t−1∑
k=0

ck,i − log(xi)− 1 = 0

log(e · xi) = εt−1 ·
t−1∑
k=0

ck,i

If we set εt−1 = log(1 − δ) for all t, we get log(e · xt,i) = log(1 − δ) ·
∑t−1

k=0 ck,i which is similar to

the MWUA formula, except with a linear scaling of 1
e .

For instance, if
∑t−1

k=0 ck,i = 0, we observe that no cost has been incurred, and wt,i = e · xt,i = 1. If∑t−1
k=0 ck,i = s, then wt,i = e · xt,i = s · log(1− δ)

Hence, we conclude that MWUA is similar to FTRL with initial states x0,i = 1
e and step sizes

εt = log(1− δ) for all t.

References

[1] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena

Scientific Belmont, MA, 1997.

18

[2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.

[3] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization. John

Wiley & Sons, 2014.

19

	1 Multiplicative Weights Update
	1.1 The Simplified Expert's Game
	1.2 The Randomized Experts Game
	1.3 The General Setting
	1.3.1 Convex Optimization as Special Case
	1.3.2 Regret for Expert's Problem

	2 Online Gradient Descent
	3 MWUA General Setting
	3.1 Examples
	3.1.1 Solving Linear Programs
	3.1.2 MWUA and Zero-Sum Games

	4 General Family of No-Regret Algorithms
	4.1 Follow the Leader
	4.2 Follow the Regularized Leader

