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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.
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Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

Can you be correct all the time? What is the “right” objective?
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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

Can you be correct all the time? What is the “right” objective?

Perform close to best expert!
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Playing the experts game

Algorithm (Weighted Majority). We define the following algorithm:

1. Initialize w? = 1 for all i € [n]. Rem?rksz _
* € isthe stepsize (to be

2. For t=1 ... T do chosen later).

300 IEY doose AW > D hoose B WS * Performs almost as good
4. Choose A, otherwise B. as. best” expert (fewest

mistakes)

5. End If

6. For expert ¢ that made a mistake do

7. wt = (1 — e)wi .

8. End For

9. For expert ¢ that did not make a mistake do
10. wl = wf_l.
11. End For
12. End For
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

Mr <2(1+e)ME + 10?”.

Proof. Let’s define the potential function ¢ = Y, w?.
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

Mr <2(1+e)ME + log

Proof. Let’s define the potential function ¢ = >, w!
® Qo =n.

® Cbt—l—l S d)t (Why?)
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr < 2(1+e)MB + Of”’.

Proof. Let’s define the potential function ¢ = Y, w?.
® ¢p =mn.

® Cbt—{—l S d)t (Why?)

Observe that if we make a mistake at time ¢ then the majority was wrong, that
is at least % will be multiplied by (1 — €).

Hence, if we make a mistake then ¢, < (1 — 6)% - % = (1 — <)oy
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr < 2(1+e)MB + Of”’.

Proof. Let’s| That is ¢ry1 < (1 — 5)¢: when we do a mistake, otherwise
® ¢

* P ¢ < (1 — %)MT P1.

Observe tha - that
is at least % will be multiplied by (1 — €).

just ¢r11 < @¢. Since we have M7 mistakes, then

Hence, if we make a mistake then ¢, < (1 — 6)% - % = (1—5)o¢

Optimization for Machine Learning



Playing the experts game

Proof cont. Moreover, assuming the best expert (say i*) did MF mistakes, we
have .
O >wg,: = (I—G)MT.
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say i*) did MF mistakes, we
have .
O >w3,: = (I—G)MT.

We conclude that

(1— e)M’IJ? < (1 — E)MT n.

By taking the log, M5 log(1 — ¢€) < log(1 — €/2) M7 + log n.

Since —x — z? < log(l — x) < —z,|ME(—€ — €*) < —Mye/2 + logn.
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Playing the experts game (randomized)

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B with some probability.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

What is the “right” objective this time?
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Playing the experts game (randomized)

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B with some probability.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

What is the “right” objective this time?

Perform in expectation close to best expert!
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Playing the experts game (randomized)

Algorithm (Randomized Weighted Majority). We define the following algorithm:

1. Initialize w? = 1 for all i € [n].

2. For t=1 ... T do

3‘ _

4. For expert ¢ that made a mistake do

6
7. For expert i that did not make a mistake do
8

9. End For
10. End For

Optimization for Machine Learning

Remarks:

* €isthe stepsize (to be
chosen later).

e Performs almost as good
as best” expert (fewest
mistakes).

* We choose i with

t—1
Wi

Zjwit

 The algorithm is also
called Multiplicative
Weights Update!

probability pf =



Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

E[M7] < (1+¢e)ME + 10?”.

Proof. Let’s define the potential function ¢ = Y, w?.

Using the exact same argument, if the best expert (say i*) did MZ mistakes,
we have

Now th-l-l — Z ’UJ;-H_l = Z 'wf(l —el; wrong at t)

Optimization for Machine Learning



Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

ogn

E[M7] < (1+e)ME +

Proof. Let’s define the potential function ¢ = Y, w?.

Using the exact same argument, if the best expert (say i*) did MZ mistakes,
we have

Now th_|_1 = z UJ;-H_l — Z wf(l —el; wrong at t)

- Z ¢tpt+1(1 T E]-’L wrong at t)
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Playing the experts game

Theorem (Weighted Majority). Let My, ME be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

ogn

E[M7] < (1+e)ME +

Proof. Let’s define the potential function ¢ = Y, w?.

Using the exact same argument, if the best expert (say i*) did MZ mistakes,
we have

Now th_|_1 = z UJ;-H_l — Z wf(l —el; wrong at t)

- Z ¢tpt+1(1 _ E]-’L wrong at t)
- Cbt Zpt+1(1 - 6]-1, wrong at t)
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Playing the experts game

Proof cont. Therefore

Cbt—l—l — th (]— - Ezp?_l]-i wrong at t)
)

— gbt pr+1(1 _ E]-i Wrong)
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Playing the experts game

Proof cont. Therefore

Cbt—l—l — th (]— - EZPE_Fl].Z' wrong at t)
)

— th pr+1(1 _ E]-i Wrong)

— (bt(l — EE[]- we made mistake at t])
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Playing the experts game

Proof cont. Therefore

Cbt—l—l — th (]— - Ezp?_l]-z' wrong at t)
)

— gbt pr+1(1 _ E]-i Wrong)

— Cbt(l — EE[]- we made mistake at t])

< gbte_EE[l we made mistake at t]

Telescopic product gives

o < ¢1€_€E[MT]-
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Playing the experts game

Proof cont. Therefore

Cbt—l—l — th (]— - EZPE_Fl].Z' wrong at t)
)

— th pr+1(1 _ E]-i Wrong)

— (bt(l — EE[]- we made mistake at t])

< gbte_EE[l we made mistake at t]

Telescopic product gives

o < ¢1€_€E[MT]-

Therefore (1 — e)Mi? < e~ EMzly or MEB(—e— ) <logn — eE[Mr].
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The general setting

Definition. At each time step t = 1...T.
e Player chooses x; € I C R" (some closed convex set).
o Aduversary chooses £y € F (set of convex functions).

e Player suffers loss ¢;(x;) and observes feedback.
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The general setting

Definition. At each time step t = 1...T.
e Player chooses x; € K C R" (some closed convex set).
o Aduversary chooses £y € F (set of convex functions).

e Player suffers loss ¢;(x;) and observes feedback.

Player’s goal is to minimize the (time average) Regret, that is:

1 T T
= Vi(xy) — min li(u
>t - min b
t=1 t=1
If Regret = 0 as T — oo, the algorithm is called no-regret.
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Convex optimization as special case

Definition. At each time step t = 1...T.
e Player chooses x; € KL C R" (some closed convex set).
e Adversary chooses same ¢ (convex function).

e Player suffers loss {(x;) and observes feedback.

Player’s goal is to minimize the (time average) Regret, that is:
T T

% Zﬁ(ggt) — Eg% f(u)] >l (% ;fﬁt) —{(x7).
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Regret for Experts problem

Player’s goal is to minimize the (time average) Regret, that is:

(E[Mp]| — #mistakes best expert)
T :
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Regret for Experts problem

Player’s goal is to minimize the (time average) Regret, that is:

(E[Mp]| — #mistakes best expert)
T :

Explanation: We chose z; the probability distribution at time ¢ over experts
and ¢; is the probability to do a mistake.
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Regret for Experts problem

Player’s goal is to minimize the (time average) Regret, that is:

(E[Mp]| — #mistakes best expert)
T :

Explanation: We chose z; the probability distribution at time ¢ over experts
and ¢; is the probability to do a mistake.

Recall that,

1
E[Mr] < (1+¢e)MB + ij”.

. _ logn - logn
Choosing € = 2 gives average regret 24/ —2—!
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Regret for Experts problem

Player’s goal is to minimize the (time average) Regret, that is:

(E[Mp]| — #mistakes best expert)
T :

Explanation: We chose x; the probability distribution at time ¢ over experts
and /; is the probability to do a mistake.

Recall that,

1
E[Mr] < (1+¢e)MB + OE”.

Choosing € = 4/ 105%” gives average regret 24/ 10%”’!

Can we do better?
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Regret for Experts problem

Consider just two experts that choose one A and B respectively at all times.
The adversary chooses uniformaly at random A or B.

T

The expected number of mistakes of an online algorithm is .

One of the two fixed strategies will have with high probability (say 99%)

% — O(V/T) mistakes.
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Online Gradient Descent

Definition (Online Gradient Descent). Let f : R" — R be convex function,

differentiable and L-Lipschitz in some compact convex set X of diameter D.
Online GD is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; and observe ¢;(x;).
2. Yy = Xt — (xtVEt(xt).
3. xty1 = Hx(yt).

Regret: % (2?21 01 (x¢) — miny Ethl Et(x)) :
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Analysis of Online GD for L-Lipschitz

Theorem (Online Gradient Descent). Let f : R” — IR be convex function,
differentiable and L-Lipschitz in some compact convex set X of diameter D.

It holds
1 & & 3LD
(T Y Cp(x) — min ) Et(x)) 2 T

Remarks:
2Nn2

LD
* Ifwewanterrore, weneedT = @( =

) iterations (same as GD for L-Lipschitz).
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) /;(x).

Et(xt) — Et(x*) S Vﬁf(xt)T(xt — x*) COIIVeXity,
1

- (X_(Xt — ) ' (x; — x*) definition of GD,
t
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) /;(x).

Et(xt) — Et(x*) S Vﬁt(xt)T(xt — x*) COIIV@Xity,

- al(xt — ) ' (x; — x*) definition of GD,
t

1
= 5= ( x; — x* §—|— Xt —ytHg — [|yr — x*H%) law of Cosines,
f

_ 1 * (|2 % (12 Kt 2
- E( Xt =Xl — (Y — X “2) + > |Vl (x¢)]|5 Def. of vy,
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) /;(x).

é’t(xt) — Et(x*) S Vﬁt(xt)T(xt — x*) COHV@Xity,

- :t( — ) ' (x; — x*) definition of GD,

— 2%“ ( xr — x¥||5 + [l — vell5 — |lye — x*H%) law of Cosines,
= 5o (I =13 = I = x°1B) + 5 [V &(x0)} Def. of s,
< o (=B Iy = x°1B) + 22~ Lipsehie

< %kt (”xt — "l = llxe1 — x Hz) + oéz—Lz projection.
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Analysis of Online GD for L-Lipschitz

Proof cont. Since

/ 0.(x%) < 1 * || 2 * 2 “sz
() = (x) < 5l =21 = e = x°) + =5
taking the telescopic sum we have
T T ) 1 1 12 T
4 — U (x")) < —x* — — :
Y () — 667D < 1 (3~ 5)*3 >
D2 T 1 1 12 T
TEG-a)SEe
2 S\ g 2 =
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Analysis of Online GD for L-Lipschitz

Proof cont. Since

() = 65°) < o (=51 = xess = °[3) + 2
(Xt t = 2 t 2 t+1 7 >
taking the telescopic sum we have
a O Lo 1 1 12 I
lr(xg) — £ < - _ Yy
Y ()~ 607 < eI (5~ 3 ) + 3
D2 L (1 1 ) 2z
< 5 ——— |+ ) a
p? 12 d LD LD
< < —VT+2VT—.
_2aT+2§&t_ VT +2VT—

where we used the fact > ﬁ < 2T and a; = %.
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Conclusion

* Introduction to Online Optimization and
Learning.

— Experts problem and MWUA.

— Online GD has rate of convergence O (i) for

62
L-Lipschitz.
— Next Lecture we will see more about online
learning.

e Next week we will talk about non-convex
optimization!
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