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Multiplicative Weights Update (recap)

Algorithm (MWUA). We define the following algorithm:

1. Initialize w =1 for all i € [n]. Remarks:
2. For t=1 ... T do ¢ £:= logn
T
e * We choose i with
bability pt = <Y
robability p; = :
4. For cach action i do P Y Pj %; w]t.‘1
5. wl=(1— ol * ¢ is the cost of action i at
time t chosen by the
G adversary.
7. End For
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MWUA general setting

Theorem (MWUA). Let OPT = min; Y_I_; c!

1
E[costymia] < OPT + eT + Og "

Proof. Let’s define the potential function ¢ = Y, w?.

Let best action in handsight be ¢* then,
we have
O > wZT* = (1 — E)OPT.

t

Now ¢ps1 =D w;' =S wi(l €)%
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MWUA general setting

Theorem (MWUA). Let OPT = min; Y_I_; c!

logn

E|[costpwual < OPT + €T + -

Proof. Let’s define the potential function ¢ = >, w!

Let best action in handsight be ¢* then,

we have

O > wZT* = (1 — E)OPT.

Now ¢p1 = S with = S wi(l - e)

=Y i T (1 —€)C
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MWUA general setting

Theorem (MWUA). Let OPT = min; Y_I_; c!

logn

E|[costpwual < OPT + €T + -

Proof. Let’s define the potential function ¢ = >, w!

Let best action in handsight be ¢* then,

we have

O > wZT* = (1 — E)OPT.

Now ¢p1 = 2 wi™ = S w1l — €)°

=> it (1 — )"
= ¢ > pitt (1 — o)
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MWUA general setting

Proof cont. Therefore

Pri1 =t Y piT(1—e)
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MWUA general setting

Proof cont. Therefore

Pr1 = »_piTH(1—

<y P~

Note (1 —€)* <1 —ex for x € [0,1],€e € [0,1/2].
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MWUA general setting

Proof cont. Therefore

Pr1 = »_piTH(1—

<y P~

= ¢¢(1 — € E[cost(t )MWUA])

Note (1 —€)* <1 —ex for x € [0,1],€e € [0,1/2].
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MWUA general setting

Proof cont. Therefore

Pr1 = »_piTH(1—

<y P~
= ¢+(1 — € - E[cost(t )MWUA])

< ¢t6_€E[COSt(t)MWUA]

Note (1 —€)* <1 —ex for x € [0,1],€e € [0,1/2].
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MWUA general setting

Proof cont. Therefore

Pt+1 =

¢ Y piT (1 —e)

< ¢t ZPtH c;)
= ¢¢(1 — € E[cost(t)yrwual)

< the_EE[COSt(t)MWUA]

Telescopic product gives

qu < Cble_EE[COStMWUA].

Therefore (1—¢)OPT < e<Eleostuwualy or OPT(—
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—€?) < log n—eE[costywual.-




MWUA general setting

Proof cont. Therefore

. . S Lt

Plugging in € = /'8 gives X (E[costywua] — OPT) < 24/ %87

< the_EE[COSt(t)MWUA]

Telescopic product gives

qu < Cble_EE[COStMWUA].

Therefore (1—€)OFT < e<Eleostuwualy or OPT(—e—€?) < log n—eE[costmwual.
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Solving Linear Programs

Problem (Linear Program). Suppose we are given a linear program in the standard
form

Ax > Db
s.tx > 0.

Goal (Check feasibility). Compute a vector x* > 0 such that for some € > 0 we get

aiTx* > b; — €, forall i.

Oracle access: Given a vector ¢ and scalar d, does there exist a x = 0 such that c’x > d.

Remark: Using the above and binary search, you can solve any linear program!
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Solving Linear Programs

Problem (Linear Program). Suppose we are given a linear program in the standard

form
Ax > Db
s.tx > 0.

Goal (Check feasibility). Compute a vector x* > 0 such that for some € > 0 we get

aciTx* > b; — €, forall i.

Oracle access: Given a vector ¢ and scalar d, does there exist a x = 0 such that c’x > d.

Remark: Using the above and binary search, you can solve any linear program!

Use MWUA, what are the actions/costs?
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Solving Linear Programs

Setting. Consider every constraint al-Tx — b; as an action.

Tx_b,
e Choose cj(x) = = 9:) Y with o chosen so that |c;| < 1.

e Initiliazation w9 = 1 (uniform distribution).

e Foreacht =1,..., T, ask oracle if there exists a point x > 0 such that clx>d

where
c=Y pia;, d=Y_pib.
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Solving Linear Programs

Setting. Consider every constraint al-Tx — b; as an action.

Tx_b,
e Choose cj(x) = = 9:) Y with o chosen so that |c;| < 1.

e Initiliazation w9 = 1 (uniform distribution).

e Foreacht =1,..., T, ask oracle if there exists a point x > 0 such that clx>d

where
c=Y pia;, d=Y_pib.

If the answer is no, linear problem infeasible!
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Solving Linear Programs

Setting. Consider every constraint al-Tx — b; as an action.

Tx_b,
e Choose cj(x) = = 9:) Y with o chosen so that |c;| < 1.

e Initiliazation w9 = 1 (uniform distribution).

e Foreacht =1,..., T, ask oracle if there exists a point x > 0 such that clx>d

where
c=Y pia;, d=Y_pib.

If the answer is no, linear problem infeasible!

If the answer is yes (returns a '), each action suffers cost ¢! = ¢;(27).
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Solving Linear Programs

From our theorem we get that

0< 303 phalat —b) < 303 pilal #t — bi) + 20/ 5
t ) t )

where p* is the optimal handsight. But the RHS is at most (for all 7)

logm logm
Tt T t

T2t — b + 241/ — .E  —Th; +2 .
Et a; T, +2p a,; : x, p
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Solving Linear Programs

From our theorem we get that

0< 303 phalat —b) < 303 pilal #t — bi) + 20/ 5
t ) t )

where p* is the optimal handsight. But the RHS is at most (for all 7)

logm logm
Tt T t

T2t — b + 241/ — .E  —Th; +2 .
Et a; T, +2p a,; : x, p

Therefore, by choosing T = 4”2;#, = % >, ' we get that

aiT:E—bz-JreZOforaHz’.

Optimization for Machine Learning



MWUA and Zero-sum games

Definition. Consider a matrix A (called payoff). A;; denotes the amount of money
player x pays to player y. Example (Rock-Paper-Scissors):

0 1 -1
A= -1 0 1 :
1 -1 0
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MWUA and Zero-sum games

Definition. Consider a matrix A (called payoff). A;; denotes the amount of money
player x pays to player y. Example (Rock-Paper-Scissors):

0 1 -1
A= -1 0 1 :
1 -1 0

Definition (Nash Equilibrium). A vector (x*,y*) is called a NE if

x*VAy* > x* A forall i € Aand x* ' Ay* < x " Ay* forall ¥ € A.
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MWUA and Zero-sum games

Definition. Consider a matrix A (called payoff). A;; denotes the amount of money
player x pays to player y. Example (Rock-Paper-Scissors):

0 1 -1
A= -1 0 1 :
1 -1 0

Definition (Nash Equilibrium). A vector (x*,y*) is called a NE if

x*VAy* > x* A forall i € Aand x* ' Ay* < x " Ay* forall ¥ € A.

How to compute NE? Let them run MWUA!
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MWUA and Zero-sum games

Algorithm (MWUA). We define the following algorithm for zero sum games:

1. Initialize p? , = 1/n, p}, = 1/n for all i

(both players, uniform).

2. For t=1 ... T do

3. Player = chooses i with probability p;
and y with p’iy respectively.
4. For each action ¢ do
1 (1—e) APy i

5. pl,=pi =

b -1 (1+€)(ATP3:71)£
6. Piy = Piy Zy '
7. End For
8. End For

Optimization for Machine Learning

Remarks:

logn
T

° t = t=1Y)
C; (Apy )i is the
(expected cost) of action i
at time t for player x.

* For player y is the expected
utility...




MWUA and Zero-sum games

Theorem (MWUA). Let ¥ = 1 Y, pk and § = 1 ¥ pl. Assume that A has entries
in[—1,1and T = O (logn) . It holds (%,7) is an e-approximate NE that is

e2

A< X' Aj+eand 2T Aj > x" Ay —e.
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MWUA and Zero-sum games

Theorem (MWUA). Let £ = 7 Y, phand j = + ¥, py- Assume that A has entries
in[—-1,1]and T = @ (logn) It holds (%,7) is an e-approximate NE that is

e2

A< X' Aj+eand 2T Aj > x" Ay —e.

Proof. Exercise 6!
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MWUA and Zero-sum games

Theorem (MWUA). Let £ = 7 Y, phand j = + ¥, py- Assume that A has entries
in[—-1,1]and T = @ (lo%n) It holds (%,7) is an e-approximate NE that is

€

A< X' Aj+eand 2T Aj > x" Ay —e.

Proof. Exercise 6!

Remark: The result above is not true for last iterate pZ, pg;. Tails. Heads  Heads. Heads

-'-1 * - - . - - - " r"-

A . .. |
S .o
. .

. . . . -
. . . .
. .
. . .

Definition. Matching Pennies:

Tails, Tails Heads, Tails
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General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set KC. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - thc;%) fre(x).

Remark: The above can perform really poorly! Why?
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General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set K. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - thc;%) fre(x).

Remark: The above can perform really poorly! Why?
Consider n =2, K = Ay, xg = (1/2,1/2) and fi(x) = x " 4.
® f() — (O, 1/2)
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General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set K. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - Eltc;%) fre(x).

Remark: The above can perform really poorly! Why?
Consider n =2, K = Ay, xg = (1/2,1/2) and fi(x) = x " 4.
o /o =1(0,1/2) e Thus z; = (1,0)

Optimization for Machine Learning



General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set K. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - Eltc;%) fre(x).

Remark: The above can perform really poorly! Why?
Consider n =2, K = Ay, xog = (1/2,1/2) and fi(x) = x .

o /o =1(0,1/2) e Thus z; = (1,0)
o /1 =(1,0)
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General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set K. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - Eltc;%) fre(x).

Remark: The above can perform really poorly! Why?
Consider n =2, K = Ay, xog = (1/2,1/2) and fi(x) = x .

o /o =1(0,1/2) e Thus z; = (1,0)
o /1 =(1,0) e Thus x5 = (0,1)
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General Family of no-regret Algorithms

Definition (Follow the Leader). Let fr : R” — R be convex functions for all k,
differentiable in some convex set K. FTL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,. - ch;%} fre(x).

Remark: The above can perform really poorly! Why?
Consider n =2, K = Ay, xg = (1/2,1/2) and fi(x) = x " 4.

o /o =1(0,1/2) e Thus z; = (1,0)
e /1 =(1,0) e Thus z3 = (0,1) Regret not vanishing!

Regret T/2 hence average
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General Family of no-regret Algorithms

Definition (Follow the Regularized Leader). Let f; : R” — IR be convex for
all k, differentiable in some convex set KC. Moreover, let R be a strongly convex
function. FTRL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,._,-{€;_1 - Z,t;% fi(x) + R(x)}.

What happens when R(x) = %lell2 and fx(x) = xTc¢ (linearin x)?
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General Family of no-regret Algorithms

Definition (Follow the Regularized Leader). Let f; : R” — IR be convex for

all k, differentiable in some convex set KC. Moreover, let R be a strongly convex
function. FTRL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,._,-{€;_1 -Z,t;}) fi(x) + R(x)}.
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General Family of no-regret Algorithms

Definition (Follow the Regularized Leader). Let f; : R” — IR be convex for

all k, differentiable in some convex set KC. Moreover, let R be a strongly convex
function. FTRL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,._,-{€;_1 -Z,t;}) fi(x) + R(x)}.

What happens when R(x) = —Yx;logx; (entropy) and f,(x) = xTcy (linearin x)?
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General Family of no-regret Algorithms

Definition (Follow the Regularized Leader). Let f; : R” — IR be convex for

all k, differentiable in some convex set K. Moreover, let R be a strongly convex
function. FTRL is defined:

Initialize at some x.
For t:=1 to T do

1. Choose x; = argmin,._,-{€;_1 -Z,t;%) fr(x) + R(x)}.

What happens when R(x) = —Y.x;logx; (entropy) am

Exercise 7! (MWUA)
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Conclusion

* Introduction to Online Optimization and
Learning.

— Applications of MWUA.
— Introduction to FTRL

e Next week we will talk about non-convex
optimization!

SUTD ISTD 50.004 Intro to Algorithms



