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Multiplicative Weights Update (recap)

Optimization for Machine Learning

Remarks:

• 𝜖 ≔
log 𝑛

𝑇

• We choose 𝑖 with 

probability pi
t =

w𝑖
𝑡−1

σ𝑗𝑤𝑗
𝑡−1 .

• ci
t is the cost of action 𝑖 at 

time 𝑡 chosen by the 
adversary.
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Solving Linear Programs

Optimization for Machine Learning

Oracle access: Given a vector 𝑐 and scalar 𝑑, does there exist a 𝑥 ≥ 0 such that 𝑐𝑇𝑥 ≥ 𝑑.

Remark: Using the above and binary search, you can solve any linear program!



Solving Linear Programs

Optimization for Machine Learning

Oracle access: Given a vector 𝑐 and scalar 𝑑, does there exist a 𝑥 ≥ 0 such that 𝑐𝑇𝑥 ≥ 𝑑.

Use MWUA, what are the actions/costs?

Remark: Using the above and binary search, you can solve any linear program!
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MWUA and Zero-sum games
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How to compute NE? Let them run MWUA!



MWUA and Zero-sum games 

Optimization for Machine Learning

Remarks:

• 𝜖 ≔
log 𝑛

𝑇

• ci
t ≔ 𝐴𝑝𝑦

𝑡−1
𝑖

is the 

(expected cost) of action 𝑖
at time 𝑡 for player 𝑥.

• For player 𝑦 is the expected 
utility…
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MWUA and Zero-sum games 

Optimization for Machine Learning

Remark: The result above is not true for last iterate 𝑝𝑥
𝑇 , 𝑝𝑦

𝑇 .
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General Family of no-regret Algorithms
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Remark: The above can perform really poorly! Why? 

Regret T/2 hence average 
Regret not vanishing!



General Family of no-regret Algorithms
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What happens when 𝑅 𝑥 =
1

2
𝑥 2 and 𝑓𝑘(𝑥) = 𝑥𝑇𝑐𝑘 (linear in 𝑥)? 
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Online GD!
What happens when 𝑅 𝑥 = −σ𝑥𝑖log𝑥𝑖 (entropy) and 𝑓𝑘(𝑥) = 𝑥𝑇𝑐𝑘 (linear in 𝑥)? 



What happens when 𝑅 𝑥 =
1

2
𝑥 2 and 𝑓𝑘(𝑥) = 𝑥𝑇𝑐𝑘 (linear in 𝑥)? 

What happens when 𝑅 𝑥 = −σ𝑥𝑖log𝑥𝑖 (entropy) and 𝑓𝑘(𝑥) = 𝑥𝑇𝑐𝑘 (linear in 𝑥)? 

General Family of no-regret Algorithms

Optimization for Machine Learning

Online GD!
MWUA!



Conclusion

• Introduction to Online Optimization and 
Learning.

– Applications of MWUA.

– Introduction to FTRL

• Next week we will talk about non-convex 
optimization!

SUTD ISTD 50.004 Intro to Algorithms 


