LO3 (partb) Online Optimization and Learning: Applications

50.579 Optimization for Machine Learning
Ioannis Panageas
ISTD, SUTD

Multiplicative Weights Update (recap)

Algorithm (MWUA). We define the following algorithm:

- 1. Initialize $w_i^0 = 1$ for all $i \in [n]$.
- 2. For $t=1 \dots T do$
- 3. Choose action i with probability proportional to w_i^{t-1} .
- 4. For each action i do
- 5. $w_i^t = (1 \epsilon)^{c_i^t} w_i^{t-1}$.
- 6. End For
- 7. End For

Remarks:

- $\epsilon \coloneqq \sqrt{\frac{\log n}{T}}$
- We choose i with probability $\mathbf{p}_{i}^{t} = \frac{\mathbf{w}_{i}^{t-1}}{\sum_{j} \mathbf{w}_{j}^{t-1}}$.
- c_i^t is the cost of action i at time t chosen by the adversary.

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^{T} c_i^t$

$$\mathbb{E}[cost_{MWUA}] \leq OPT + \epsilon T + \frac{\log n}{\epsilon}.$$

Proof. Let's define the potential function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1 - \epsilon)^{c_i^t}$$

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^{T} c_i^t$

$$\mathbb{E}[cost_{MWUA}] \leq OPT + \epsilon T + \frac{\log n}{\epsilon}.$$

Proof. Let's define the potential function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1 - \epsilon)^{c_i^t}$$
$$= \sum \phi_t p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

Theorem (MWUA). Let $OPT = \min_i \sum_{t=1}^{T} c_i^t$

$$\mathbb{E}[cost_{MWUA}] \leq OPT + \epsilon T + \frac{\log n}{\epsilon}.$$

Proof. Let's define the potential function $\phi_t = \sum_i w_i^t$.

Let best action in handsight be i^* then, we have

$$\phi_T > w_{i^*}^T = (1 - \epsilon)^{OPT}.$$

Now
$$\phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t (1 - \epsilon)^{c_i^t}$$

$$= \sum \phi_t p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

$$= \phi_t \sum p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

$$\leq \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon \cdot c_i^t)$$

Note $(1 - \epsilon)^x \le 1 - \epsilon x$ for $x \in [0, 1], \epsilon \in [0, 1/2]$.

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

$$\leq \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon \cdot c_i^t)$$

$$= \phi_t (1 - \epsilon \cdot \mathbb{E}[\text{cost}(t)_{\text{MWUA}}])$$

Note $(1 - \epsilon)^x \le 1 - \epsilon x$ for $x \in [0, 1], \epsilon \in [0, 1/2]$.

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

$$\leq \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon \cdot c_i^t)$$

$$= \phi_t (1 - \epsilon \cdot \mathbb{E}[\cot(t)_{MWUA}])$$

$$< \phi_t e^{-\epsilon \mathbb{E}[\cot(t)_{MWUA}]}$$

Note $(1 - \epsilon)^x \le 1 - \epsilon x$ for $x \in [0, 1], \epsilon \in [0, 1/2]$.

Proof cont. Therefore

$$\phi_{t+1} = \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon)^{c_i^t}$$

$$\leq \phi_t \sum_{i} p_i^{t+1} (1 - \epsilon \cdot c_i^t)$$

$$= \phi_t (1 - \epsilon \cdot \mathbb{E}[\cot(t)_{MWUA}])$$

$$\leq \phi_t e^{-\epsilon \mathbb{E}[\cot(t)_{MWUA}]}$$

Telescopic product gives

$$\phi_T \le \phi_1 e^{-\epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]}.$$

Therefore $(1-\epsilon)^{OPT} \leq e^{-\epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]} n$, or $OPT(-\epsilon - \epsilon^2) \leq \log n - \epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]$.

Proof cont. Therefore

Plugging in
$$\epsilon = \sqrt{\frac{\log n}{T}}$$
, gives $\frac{1}{T}(\mathbb{E}[\text{cost}_{\text{MWUA}}] - OPT) \le 2\sqrt{\frac{\log n}{T}}!$

$$\leq \phi_t e^{-\epsilon \mathbb{E}[\cot(t)_{MWUA}]}$$

Telescopic product gives

$$\phi_T \le \phi_1 e^{-\epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]}.$$

Therefore $(1-\epsilon)^{OPT} \leq e^{-\epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]} n$, or $OPT(-\epsilon - \epsilon^2) \leq \log n - \epsilon \mathbb{E}[\text{cost}_{\text{MWUA}}]$.

Problem (Linear Program). Suppose we are given a linear program in the standard form

$$Ax \ge b$$

s.t $x \ge 0$.

Goal (Check feasibility). Compute a vector $x^* \ge 0$ such that for some $\epsilon > 0$ we get

$$\alpha_i^{\top} x^* \geq b_i - \epsilon$$
, for all i.

Oracle access: Given a vector c and scalar d, does there exist a $x \ge 0$ such that $c^T x \ge d$.

Remark: Using the above and binary search, you can solve any linear program!

Problem (Linear Program). Suppose we are given a linear program in the standard form

$$Ax \ge b$$

s.t $x \ge 0$.

Goal (Check feasibility). Compute a vector $x^* \ge 0$ such that for some $\epsilon > 0$ we get

$$\alpha_i^{\top} x^* \geq b_i - \epsilon$$
, for all i.

Oracle access: Given a vector c and scalar d, does there exist a $x \ge 0$ such that $c^T x \ge d$.

Remark: Using the above and binary search, you can solve any linear program!

Use MWUA, what are the actions/costs?

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

- Choose $c_i(x) = \frac{a_i^\top x b_i}{\rho}$ with ρ chosen so that $|c_i| \leq 1$.
- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^\top x \ge d$ where

$$c = \sum p_i^t a_i, d = \sum p_i^t b_i.$$

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

- Choose $c_i(x) = \frac{a_i^\top x b_i}{\rho}$ with ρ chosen so that $|c_i| \leq 1$.
- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^{\top}x \ge d$ where

$$c = \sum p_i^t a_i, d = \sum p_i^t b_i.$$

If the answer is no, linear problem infeasible!

Setting. Consider every constraint $a_i^{\top} x - b_i$ as an action.

- Choose $c_i(x) = \frac{a_i^\top x b_i}{\rho}$ with ρ chosen so that $|c_i| \leq 1$.
- Initiliazation $w_i^0 = 1$ (uniform distribution).
- For each t = 1, ..., T, ask oracle if there exists a point $x \ge 0$ such that $c^{\top}x \ge d$ where

$$c = \sum p_i^t a_i, d = \sum p_i^t b_i.$$

If the answer is no, linear problem infeasible!

If the answer is yes (returns a x^t), each action suffers cost $c_i^t = c_i(x^t)$.

From our theorem we get that

$$0 \le \sum_{t} \sum_{i} p_i^t (a_i^\top x_i^t - b_i) \le \sum_{t} \sum_{i} p_i^* (a_i^\top x_i^t - b_i) + 2\rho \sqrt{\frac{\log m}{T}}.$$

where p^* is the optimal handsight. But the RHS is at most (for all i)

$$\sum_{t} a_i^{\top} x_i^t - b_i + 2\rho \sqrt{\frac{\log m}{T}} = a_i^{\top} \sum_{t} x_i^t - Tb_i + 2\rho \sqrt{\frac{\log m}{T}}.$$

From our theorem we get that

$$0 \le \sum_{t} \sum_{i} p_i^t (a_i^\top x_i^t - b_i) \le \sum_{t} \sum_{i} p_i^* (a_i^\top x_i^t - b_i) + 2\rho \sqrt{\frac{\log m}{T}}.$$

where p^* is the optimal handsight. But the RHS is at most (for all i)

$$\sum_{t} a_i^{\top} x_i^t - b_i + 2\rho \sqrt{\frac{\log m}{T}} = a_i^{\top} \sum_{t} x_i^t - Tb_i + 2\rho \sqrt{\frac{\log m}{T}}.$$

Therefore, by choosing
$$T = \frac{4\rho^2 \log m}{\epsilon^2}$$
, $\tilde{x} = \frac{1}{T} \sum_t x^t$ we get that $a_i^{\top} \tilde{x} - b_i + \epsilon \ge 0$ for all i .

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right).$$

Definition (Nash Equilibrium). A vector (x^*, y^*) is called a NE if

$$x^* \top Ay^* \ge x^* \top A\tilde{y}$$
 for all $\tilde{y} \in \Delta$ and $x^* \top Ay^* \le \tilde{x} \top Ay^*$ for all $\tilde{x} \in \Delta$.

Definition. Consider a matrix A (called payoff). A_{ij} denotes the amount of money player x pays to player y. Example (Rock-Paper-Scissors):

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right).$$

Definition (Nash Equilibrium). A vector (x^*, y^*) is called a NE if

$$x^* \top Ay^* \ge x^* \top A\tilde{y}$$
 for all $\tilde{y} \in \Delta$ and $x^* \top Ay^* \le \tilde{x} \top Ay^*$ for all $\tilde{x} \in \Delta$.

How to compute NE? Let them run MWUA!

Algorithm (MWUA). We define the following algorithm for zero sum games:

- 1. Initialize $p_{i,x}^0 = 1/n$, $p_{i,y}^0 = 1/n$ for all *i* (both players, uniform).
- 2. For t=1 ... T do
- 3. Player x chooses i with probability $p_{i,x}^t$ and y with $p_{i,y}^t$ respectively.
- For each action i do

5.
$$p_{i,x}^t = p_{i,x}^{t-1} \frac{(1-\epsilon)^{(Ap_y^{t-1})_i}}{Z_x}.$$

5.
$$p_{i,x}^{t} = p_{i,x}^{t-1} \frac{(1-\epsilon)^{(Ap_y^{t-1})_i}}{Z_x}.$$
6.
$$p_{i,y}^{t} = p_{i,y}^{t-1} \frac{(1+\epsilon)^{(A^{\top}p_x^{t-1})_i}}{Z_y}.$$

- **End For**
- 8. End For

Remarks:

•
$$\epsilon \coloneqq \sqrt{\frac{\log n}{T}}$$

- $c_i^t \coloneqq (Ap_y^{t-1})_i$ is the (expected cost) of action iat time t for player x.
- For player y is the expected utility...

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_{t} p_{x}^{t}$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_{y}^{t}$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^{2}}\right)$. It holds (\tilde{x},\tilde{y}) is an ϵ -approximate NE that is $\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon$ and $\tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon$.

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_{t} p_{x}^{t}$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_{y}^{t}$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^{2}}\right)$. It holds (\tilde{x},\tilde{y}) is an ϵ -approximate NE that is $\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon$ and $\tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon$.

Proof. Exercise 6!

Theorem (MWUA). Let $\tilde{x} = \frac{1}{T} \sum_t p_x^t$ and $\tilde{y} = \frac{1}{T} \sum_t p_y^t$. Assume that A has entries in [-1,1] and $T = \Theta\left(\frac{\log n}{\epsilon^2}\right)$. It holds (\tilde{x},\tilde{y}) is an ϵ -approximate NE that is

$$\tilde{x}^{\top} A \tilde{y} \leq x'^{\top} A \tilde{y} + \epsilon \text{ and } \tilde{x}^{\top} A \tilde{y} \geq x^{\top} A y' - \epsilon.$$

Proof. Exercise 6!

Remark: The result above is not true for last iterate p_x^T , p_y^T .

Definition. *Matching Pennies:*

$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Rightarrow$$

Tails, Tails Heads, Tails

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

Initialize at some x_0 . For t:=1 to T do

1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

Initialize at some x_0 . For t:=1 to T do

1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider
$$n = 2$$
, $K = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

•
$$\ell_0 = (0, 1/2)$$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

Initialize at some x_0 . For t:=1 to T do

1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider
$$n = 2$$
, $K = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

•
$$\ell_0 = (0, 1/2)$$
 • Thus $x_1 = (1, 0)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

Initialize at some x_0 . For t:=1 to T do

1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $K = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

> Initialize at some x_0 . For t:=1 to T do

> > 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $K = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$ Thus $x_2 = (0,1)$

Definition (Follow the Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions for all k, differentiable in some convex set K. FTL is defined:

> Initialize at some x_0 . For t:=1 to T do

> > 1. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{K}} \sum_{k=0}^{t-1} f_k(x)$.

Remark: The above can perform really poorly! Why?

Consider n = 2, $K = \Delta_2$, $x_0 = (1/2, 1/2)$ and $f_k(x) = x^{\top} \ell_k$.

- $\ell_0 = (0, 1/2)$ Thus $x_1 = (1, 0)$
- $\ell_1 = (1,0)$
- Thus $x_2 = (0,1)$

Regret T/2 hence average Regret not vanishing!

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 .

For t:=1 to T do

1. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + R(x) \}.$$

What happens when
$$R(x) = \frac{1}{2} ||x||^2$$
 and $f_k(x) = x^T c_k$ (linear in x)?

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 .

For t:=1 to T do

1. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + R(x) \}.$$

What happens when
$$R(x) = \frac{1}{2} ||x||^2$$
 and $f_k(x)$

Online GD!

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 .

For t:=1 to T do

1. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + R(x) \}.$$

What happens when
$$R(x) = \frac{1}{2} ||x||^2$$
 and $f_k(x)$

Online GD!

What happens when $R(x) = -\sum x_i \log x_i$ (entropy) and $f_k(x) = x^T c_k$ (linear in x)?

Definition (Follow the Regularized Leader). Let $f_k : \mathbb{R}^n \to \mathbb{R}$ be convex for all k, differentiable in some convex set K. Moreover, let R be a strongly convex function. FTRL is defined:

Initialize at some x_0 .

For t:=1 to T do

1. Choose
$$x_t = \operatorname{argmin}_{x \in \mathcal{K}} \{ \epsilon_{t-1} \cdot \sum_{k=0}^{t-1} f_k(x) + R(x) \}.$$

What happens when $R(x) = \frac{1}{2} ||x||^2$ and $f_k(x)$

Online GD!

What happens when $R(x) = -\sum x_i \log x_i$ (entropy) a

MWUA!

Exercise 7! (MWUA)

Conclusion

- Introduction to Online Optimization and Learning.
 - Applications of MWUA.
 - Introduction to FTRL
- Next week we will talk about non-convex optimization!