
Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas Scribed by: Joel Weijia Lai

Lecture 2. Convex Optimization and Gradient Descent.

1 Introduction

In the previous week, we studied various gradient descent routine for differentiable functions. How-

ever, not all functions are differentiable at every point, as such, in order for our gradient descent

routine to be applicable, we need to explore a new way of analyzing convex, non-differentiable

functions.

1.1 Definitions

Definition 1.1 (Subgradients) Let f(x) : X → R be a function, with X ⊂ Rd. gx ∈ Rd is called

a subgradient of f at x if for all y ∈ X we have

f(y)− f(x) ≥ g>x (y − x).

Since the choice of subgradient is not unique, we can denote the set of subgradients at x by ∂f(x)

also called the subdifferential of f at the point x. Also, at a differentiable x, the only subgradient

is ∇f(x).

Example 1.1 Consider the function f(x) given by Figure 1. f(x) is clearly convex, but non-

differentiable at x0. Then, the subgradient at any x′ that is differentiable is ∇f(x′) = df(x′)
dx , while

the subdifferential is given by the set of subgradients highlighted.

Figure 1: Figure for Example 1.1 of a convex function that is non-differentiable at a point.
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Example 1.2 Consider the function f(x) = |x|. f(x) is clearly convex, but non-differentiable at

x = 0. Then, the subgradient g0 can be found by a direct application of the definition,

|y| − |x| ≥g0(y − x),

|y| ≥g0y.

The subgradient g0 satisfying the above inequality is g0 ∈ [−1, 1]. To be precise,

∂|x| =


1 x > 0,

−1 x < 0,

[−1, 1] x = 0.

Notice that in both examples, if 0 ∈ ∂f(x), then x is a global minimum. This is not a coincidence

and will be the idea of Lemma 1.5, discussed later.

Theorem 1.3 (Supporting Hyperplane Theorem) Let C ⊆ Rn be a nonempty convex set

and x̄ be a point on the boundary of C. Then, there exists a supporting hyperplane passing through

x̄ and containing the set C in one of its halfspaces.

Figure 2: Proof by picture of the Supporting Hyperplane Theorem.

Proof: Figure 2 shows a pictorial proof of the theorem. Consider a sequence {xk} for xk /∈ cl(C)

and converges to x̄ as k →∞. Let x̂k be the projection of xk on cl(C). Then, we have,

a>k xk ≤ a>k x, ∀x ∈ cl(C), ∀k = 0, 1, . . . .

where ak = (x̂k − xk)/‖x̂k − xk‖. Let a be the limit point of {ak}.

Lemma 1.4 (Existence and convexity) Let f : X → R be a function such that ∂f(x) 6= ∅ for

all x. Then, it holds that f is convex.
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Proof: For the choice: x := ty + (1 − t)x and y := x, then it holds that there exists a vector g

such that

f(ty + (1− t)x)− f(x) ≤ g>t(y − x). (1)

In the same way, for the choice: y := ty + (1− t)x and x := y, it holds that there exists a vector g

such that

f(ty + (1− t)x)− f(y) ≤ g>(1− t)(x− y). (2)

Note that the inequalities are reversed. Then if we were to take the linear combination (1 − t) ·
(1) + t · (2), we have

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x).

This is the definition of convexity that we have seen in Lecture 1. The converse is also true. This

is a consequence of the Supporting Hyperplane Theorem.

Lemma 1.5 (Local minima are global minima) Let f : X → R be a convex function. If x is

a local minimum, then it is a global minimum. This happens if and only if 0 ∈ ∂f(x).

This lemma claims the uniqueness of the minimum. The proof is for x being a global minimum if

and only if 0 ∈ ∂f(x) is straight forward. We shall prove the uniqueness of the minimum.

Proof: For a small enough t > 0. Suppose there are local minima at x and y. Then

f(x) ≤ f(tx+ (1− t)y)

≤ tf(x) + (1− t)f(y),

⇒ (1− t)f(x) ≤ (1− t)f(y),

hence, we conclude that f(x) ≤ f(y). However, x and y are arbitrary, so the same can be said for

f(y) ≤ f(x). Thus, we conclude that f(x) = f(y), the minimum is unique.

2 Gradient Descent Revisited

Definition 2.1 (Gradient Descent (Subgradient)) Let f : Rd → R be a convex function that

is not necessarily differentiable in some convex set X . The algorithm is defined iteratively:

xk+1 = xk − αgxk ,

where gxk ∈ ∂f(xk) is the subgradient computed at xk.

Note that this definition is a slight modification from the definition we saw in Lecture 1. (1) The

function is not necessarily differentiable in the convex set X . (2) The gradient ∇f(xk) is replaced

by the subgradient. However, we have the same guarantees as discussed in classic and projected

gradient descent. Here, we discuss the analysis of gradient descent for L-Lipschitz.
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Exercise 3 (General case). Suppose f(x) is L-Lipschitz continuous and ∂f(x) 6= ∅. Then

∀x ∈dom(f)

‖gx‖2 ≤ L where gx ∈ ∂f(x).

This the the general case of Exercise 3 from Lecture 1. Prove is left as an exercise.

Theorem 2.1 (Gradient Descent (Subgradient)) Let f : Rd → R be convex (want to mini-

mize) and L-Lipschitz. Let R = ‖x1−x∗‖2, the distance between the initial point x1 and minimizer

x∗. It holds for T = R2L2

ε2
,

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε,

with approximately choosing α = ε
L2

Proof:

f(xt)− f(x∗) ≤ g>xt(xt − x
∗) (def. subgradient)

=
1

α
(xt − xt+1)

>(xt − x∗) (def. gradient descent 2.1)

=
1

2α

(
‖xt − x∗‖22 + ‖xt − xt+1‖22 − ‖xt+1 − x∗‖22

)
(2a>b = |a|2 + |b|2 − |a− b|2)

=
1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
α

2
‖gxt‖22 (def. gradient descent 2.1)

≤ 1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
. (Exercise 3)

Now, we take the telescopic sum across t = 1, . . . , T and dividing by T . We get

1

T

T∑
t=1

(
f(xt)− f(x∗)

)
≤ 1

2αT

T∑
t=1

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
.

For the LHS, we apply Jensen’s inequality

1

T

T∑
t=1

(
f(xt)− f(x∗)

)
≥ f

(
1

T

T∑
t=1

xt

)
− f(x∗).

For the RHS, taking the telescopic sum, we have

1

2αT

T∑
t=1

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
≤ 1

2αT

(
‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)
≤ 1

2αT
‖x1 − x∗‖22,

as the second term is non-negative. Thus, we put every thing together

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ 1

2αT
‖x1 − x∗‖22 +

αL2

2
=

R2

2αT
+
αL2

2
= ε,

for the choice α =
ε

L2
and T =

R2L2

ε2
.
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3 Stochastic Gradient Descent (SGD)

Definition 3.1 (Stochastic Gradient Descent) Let f : Rd → R be convex (want to minimize).

The SGD algorithm is defined iteratively:

xk+1 = xk − αkvk,

where E[vk|xk] ∈ ∂f(xk).

Key remarks:

• αk is called the stepsize. Intuitively, the smaller, the slower the algorithm.

• αk must depend on k, i.e αk → 0 as k →∞.

• vk and xk are random variables. In SGD vk is updated randomly, i.e vk = ∇f(xk) + ζk for

E[ζk|xk] = 0

Theorem 3.1 (µ-Strongly Convex Stochastic Gradient Descent) Let f : Rd → R be µ-

strongly convex (want to minimize). Moreover, assume that E[‖vk‖2] ≤ ρ2. Let x∗ be the minimizer.

It holds for αk = 1
µk ,

E

[
f

(
1

T

∑
t

xt

)]
− f(x∗) ≤ ρ2

2µT
(1 + log T ).

Key remarks:

• αk scales as 1
k and is vanishing to talk about convegence.

• For T = Θ
(
1
ε log 1

ε

)
we get an error ε.

• Rakhlin, Shamir & Sridharan (2012) derived a convergence rate in which log T is eliminated

for a variant [1].

• Shamir & Zhang (2013) showed theorem above for last iterate for last iterate xT , i.e E[f(xt)]−
f(x∗) ≤ ρ2

2µT (1 + log T ) [2].

Proof: Set ∇t = E[vt|xt] (this is a random variable). From strong convexity, we get

(xt − x∗)>∇t ≥ f(xt)− f(x∗) +
µ

2
‖xt − x∗‖22,

E[(xt − x∗)>∇t] ≥ E
[
f(xt)− f(x∗) +

µ

2
‖xt − x∗‖22

]
.

This will form the lower bound. For the upper bound, we claim

E[(xt − x∗)>∇t] ≤
E[‖xt − x∗‖22 − ‖xt+1 − x∗‖22]

2αt
+
αtρ

2

2
.
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Proof of claim: The Law of Cosines gives

‖xt − x∗‖22 − ‖xt+1 − x∗‖22 ≥ 2αt(xt − x∗)>vt − a2t ‖vt‖22.

Taking the expectation on both sides,

E
[
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

]
≥ E

[
2αt(xt − x∗)>vt

]
− E

[
a2t ‖vt‖22

]
,

and, for the first term of the RHS,

E
[
E[2αt(xt − x∗)>vt|xt]

]
= E

[
2αt(xt − x∗)>E[vt|xt]

]
= E

[
2αt(xt − x∗)>∇t

]
.

A rearrangement of the terms will give the inequality of the claim.

Thus, if we were to put the lower and upper bound together and apply linear expectation, i.e

E[X + Y ] = E[X] + E[Y ]

E
[
f(xt)− f(x∗) +

µ

2
‖xt − x∗‖22

]
≤ E[‖xt − x∗‖22 − ‖xt+1 − x∗‖22]

2αt
+
αtρ

2

2
,

E[f(xt)− f(x∗)] ≤ E[‖xt − x∗‖22(1− αtµ)− ‖xt+1 − x∗‖22]
2αt

+
αtρ

2

2
.

Therefore, we take the telescopic sum across t and dividing by T , and recall that αt = 1
tµ ,

E

[
1

T

∑
t

f(xt)

]
− f(x∗) ≤ E

[
− µT

2
‖xT − x∗‖22

]
+
ρ2

2µ

1

T

∑
t

1

t

≤ ρ2

2µ

1

T

∑
t

1

t
,

since the first term on the RHS is non-positive. Applying Jensen’s inequality, and the fact that∑T
t=1

1
t ≤ 1 + log T , we have the result for µ-strongly convex SGD

E

[
f

(
1

T

∑
t

xt

)]
− f(x∗) ≤ ρ2

2µT
(1 + log T ).

Theorem 3.2 (General Stochastic Gradient Descent) Let f : Rd → R be a convex function

(want to minimize). Moreover, assume that ‖vk‖2 ≤ ρ with probability one. Let R = ‖x1 − x∗‖2,

the distance between the initial point x1 and minimizer x∗. It holds for α = R
ρ
√
T

,

E

[
f

(
1

T

∑
t

xt

)]
− f(x∗) ≤ Rρ√

T
.

Key remarks:
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• α is fixed but scales as
√

1
T is vanishing to talk about convergence.

• For T = Θ
(

1
ε2

)
we get an error ε.

Proof: As a notation, we denote E1:k[·] as the expectation of the joint distribution of random

variables (v1, . . . , vk).

E1:T [f(xt)− f(x∗)] ≤ E1:T [(xt − x∗)>∇t]
= E1:t−1

[
E1:T [(xt − x∗)>∇t|v1, . . . , vt−1]

]
(Conditional expectation)

= E1:T

[
(xt − x∗)>E1:t−1[∇t|v1, . . . , vt−1]

]
(Deterministic in v1, . . . .vt−1)

= E1:T

[
(xt − x∗)>vt

]
≤ E1:T

[
1

2α

(
‖xt − x∗‖22 + ‖xt − xt+1‖22 − ‖xt+1 − x∗‖22

)]
(2a>b = |a|2 + |b|2 − |a− b|2)

= E1:T

[
1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)]
+
α‖vt‖22

2
(def. of SGD 3.1)

≤ E1:T

[
1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)]
+
αρ2

2
. (‖vt‖2 ≤ ρ)

Therefore, we take the telescopic sum across t and dividing by T ,

E1:T

[
1

T

∑
t

f(xt)

]
− f(x∗) ≤ 1

2αT
E1:T [‖x1 − x∗‖22 − ‖xT+1 − x∗‖22] +

αρ2

2

≤ R2

2αT
+
αρ2

2
=
Rρ√
T

again, we apply Jensen’s inequality and noting that α = R
ρ
√
T

, we arrive at the result for the general

SGD

E

[
f

(
1

T

∑
t

xt

)]
− f(x∗) ≤ Rρ√

T
.

Definition 3.2 (Coordinate Descent) Let f : Rd → R be a convex differentiable function in

some convex set X . The CD algorithm is defined iteratively by choosing a coordinate i, where i is

drawn uniformly at random from [d] and update:

xk+1 = xk − αk
∂f(xk)

∂xi
· ei,

where ei is a unit vector with 1 in position i and zeros in all other positions.

Once can view Coordinate Descent as a Stochastic Gradient Descent with the specific oracle

g̃(x) = d∂f(x)∂xj
· ej , where j is drawn uniformly at random from [d]. Clearly, E[g̃(x)] = ∇f(x),

and furthermore E
[
‖g̃(x)‖22

]
= d‖∇f(x)‖22.
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4 Stochastic Gradient Descent (Examples)

Having seen how SGD works, it is not imperative that we see the kinds of problems that SGD can

solve. One such instance the use of SGD to solve risk minimization problems, also called Maximum

Likelihood Estimates (MLE) problems.

4.1 Risk Minimization

Definition 4.1 (Risk Minimization) Let l(x, z) : X × Z → R be a risk function and D some

unknown distribution we can get samples from. We are interested in solving:

min
x∈X

L(x), where L(x) := Ez∼D[l(x, z)].

There are two approaches to tackling such problems,

1. Take a large number (say n) samples zi independently and consider the estimate L̄(x) :=
1
n

∑
i l(x, z). By the Law of Large Numbers this is a close enough (hopefully) estimate of

L(x). Then, we run a first order optimization algorithm (say GD) on L̄(x). This is a possible

means of solving the problem. However, if we do not know the form of l(x, z), then we are

essentially stuck. Also, this requires many calculations (n) to perform one optimization step.

2. Of course, the second method is to perform Stochastic Gradient Descent!. For each iteration

t+1, take a new sample zt independently from z1, . . . , zt−1 and consider the unbiased estimate

∇xl(x, z). Then, we update xt+1 = xt − αt∇xl(x, z).

4.2 Examples

Example 4.1 (MLE for Gaussian) Let z ∼ N (µ, 1) and l(x, z) := − log px(z) denotes the log-

likelihood of mathcalN(x, 1). Here, we have an unknown distribution D, which is a Gaussian with

unknown mean, µ. We are interested in solving:

min
x∈R

Ez∼N (µ,1)[− log px(z)],

where px(z) is the probability density function.

Some remarks on Maximum (log)-Likelihood:

1. The standard approach for parameter estimation boils down to creating an optimization

problem that best solves for parametric families of distributions.

2. Under certain assumptions, the Maximum (log) Likelihood estimator is consistent! The min-

imizer should reveal some information about the “unknowns”.

3. Since the probability density function px(z) = 1√
2π

exp
[
− (z−x)2

2

]
, the above problem boils

down to minx∈R Ez∼N (µ,1)

[
(z−x)2

2

]
.
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It is clear that the minimizer x∗ = µ. However, we do not know what is µ, so we start by solving

the simplified minimization problem:

min
x∈R

Ez∼N (µ,1)

[(z − x)2

2

]
.

• The derivative is (x− z), i.e. vt = (xt − zt)

• Ez
[
(x − z)2

]
= 1 + (x − µ)2. This is bounded, which is exactly what we require from SGD,

E
[
‖v‖22

]
≤ ρ2.

• The second derivative is 1, hence, this is 1-strongly convex.

• Starting from x0 = 0, at iteration t + 1, we get a fresh sample zt and we have xt+1 =

xt − αt(xt − zt)

Choosing αt = 1
t , we can check that xT = 1

t

∑T
t=1 zt. This is the empirical mean.

Question 1: We know that f(x̃) − f(x) ≤ ε. But what is ‖x̃ − x‖ bounded by? Answer 1:

Consider strong convexity:

ε′ ≥ f(x̃)− f(x) ≥ ∇f(µ)(x̃− µ) +
1

2
‖x̃− µ‖22

Here, x̃ is a sample drawn from the distribution of the empirical mean, i.e.

1

T

T∑
t=1

zt ∼ N
(
µ,

1

T

)
.

Thus, ε′ ≥ ‖x̃ − µ‖22. The first term vanishes because ∇f(µ) = 0. Thus, ‖x̃ − µ‖2 ≤
√
ε′ ≡ ε ⇒

‖x̃− µ‖2 ≤ ε2. Recall, for T = Θ
(

1
ε′ log 1

ε′

)
, we get an error of ε. Hence, we get T ∼ 1

ε2
log 1

ε2
.

Question 2: Having shown that can get ε-close to µ after 1
ε2

log 1
ε2

iterations, we claim that

this is not the best we can do. Why? Answer 2: To see why, we know that for a Gaussian

distribution, the probability of a sample falling beyond 3 standard deviations from the mean is

about 1%, i.e. P
(
|x̃−µ| ≥ 3√

T
≡ ε
)
∼ 1%. Therefore, we conclude that T ∼ 1

ε2
. Note that it might

not always be the case that the empirical mean can give us information about the distribution D.

Example 4.2 (Bias of a coin) Assume you are given a coin that gives H with probability p ∈
(0, 1) and T with probability 1− p. How many tosses do you need to get an estimate p̃ about p and

be sure with probability 99% that |p− p̃| ≤ ε? [Hint: fp(z) = pz(1− p)1−z]

It is clear that the minimizer x∗ = p. However, we do not know what is p, so we start by solving

the minimization problem:

min
x

E
[
− z log x− (1− z) log (1− x)

]
.
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• The derivative of l is − z
x + 1−z

1−x = x−z
x(1−x) , which has absolute value at most 1

ε for x ∈ (ε, 1−ε).

• The second derivative of L is p
x2

+ 1−p
(1−x)2 , hence, it is 4(p− p2)-strongly convex for x ∈ (0, 1).

Notice that (p− p2) is the variance of the Bernoulli distribution.

• Starting from x0 = 1/2, at iteration t + 1, we get a fresh sample zt and we have xt+1 =

xt − αt xt−zt
xt(1−xt) .

As seen in the previous example, T ∼ 1
ε log 1

ε , for µ-strongly convex SGD, is asymptotically equiv-

alent to ρ2

2µε log 1
ε . We have seen that ρ = 1

ε and µ = 4(p − p2). Thus, we conclude that we can

get ε′-close to the log-likelihood after 1
(p−p2)ε′3 log 1

ε′ iterations and ε-close to p after 1
(p−p2)ε6 log 1

ε2

iterations. We ask ourselves the same question: Can we do better? Again, yes. Since zt ∼ B(p),

we can calculate the mean and variance of the empirical mean,

E
[ 1

T

∑
zt

]
=

1

T

∑
E[zt]

=
1

T

∑
1 · p+ 0(1 + p)

= p

Var
[∑

zt

]
=
∑

Var[zt]

=
∑

p− p2 = T (p− p2)

⇒ Var
[ 1

T

∑
zt

]
=

1

T 2
Var
[∑

zt

]
=

1

T
(p− p2)

Thus, having obtained the variance, to have a 99% confidence, we apply the Chebyshev’s inequality,

P
[∣∣∣ 1

T

∑
zt

∣∣∣∣2 ≥ ε2] ≤ Var
[
1
T

∑
zt

]
ε2

= 1%

⇒ p− p2

T
=

ε2

100

⇒ T ∼ O
(
p− p2

ε2

)
∼ O

(
1

ε2

)

Example 4.3 (Non-example: Mixture of Gaussians) Assume you have access to i.i.d sam-

ples from z ∼ N (µ, 1). However, there is an adversary that with probability 1/2 corrupts z and

gives you −z. Can you infer/estimate µ?

To answer the question, we need to solve:

min
x∈R

Ez∼N (µ,1)

[
− log

(
1

2
√

2π
exp

[
− (z − x)2

2

]
+

1

2
√

2π
exp

[
− (z + x)2

2

])]
.

This, however is not convex, the proof is left as an exercise (Hint: suffice to show that the gradient

at x = 0 is 0). While the empirical mean is zero, it does not reveal any information about µ.

Stochastic Gradient Descent cannot help us here. This is the motivation for the content covered in

subsequent weeks where we start to look at non-convex functions.
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Figure 3: Probability density function of the mixture of 2 Gaussians
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