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Definitions

Definition (Subgradients). Let f(x) : X — R be a function, with X C R
gx € R% is called a subgradient of f at x if for all y € X we have

fly) — f(x) > g4 (y — x).

You can define the set of subgradients at x, we denote it by df (x).
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Definitions

Definition (Subgradients). Let f(x) : X — R be a fun
gx € R¥ is called a subgradient of f at x if for all y € X we h

fly) — f(x) > g4 (y — x).

Example: |z|

You can define the set of subgradients at x, we denote it by df (x).

Lemma (Existence and convexity). Let f : X — IR be a function such
that of (x) # @ for all x. It holds that f is convex.

Proof. 1t holds that there exists a vector g such that
flty + (1= t)x) = f(x) < gty — x),
flty+ (1 =1)x) = fly) <g' (1-t)(x—y).
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Flty+(1-x) - f(x) <87ty —v) (1),
Flty+(1 -0 - f(y) <g" (1= Hx—y) (2). }:’\

Sty + (1 =t)x) < (1 —1)f(x) +tf(y).

Converse is also true! Application of Supporting Hyperplane Theorem...
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Flty+(1-x) - f(x) <87ty —v) (1),
Flty+(1 -0 - f(y) <g" (1= Hx—y) (2). }f’

Sty + (1 =t)x) < (1 —1)f(x) +tf(y).

Converse is also true! Application of Supporting Hyperplane Theorem...

Lemma (Local minima are global minima). Let f : X — IR be a convex
function. If x is a local minimum then it is a global minimum. This happens

if and only if 0 € 9f (x).

Proof. Tt is a global minimum if and only if 0 € 9f(x).

Moreover, for t > 0 small enough, Hence f(z) < f(y).

fl) < fitz+ (1 -t)y) <tf(x)+ (1 —1)f(y).
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Definitions

Definition (Revisited Gradient Descent). Let f : R? — R be convex function
not necessarily differentiable in some convex set X. GD is defined iteratively:

Xk+1 = Xk — K& xp-

Remarks
*  Jx;, € 0f (xi) is the subgradient computed at xy.
e Same guarantees as classic and projected GD.
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Analysis of GD for L-Lipschitz

Theorem (Gradient Descent). Let f : R? — R be differentiable, convex

(want to minimize) and L-Lipschitz. Let R = ||x1 — x*||,, the distance
between the initial point xo and minimizer x*. It holds for T = R;Lz
1 T
flox|—fx") <e
r'i=

with appropriately choosing & = .
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

flxy) — f(x") < g;;(xt — x™) def. subgradient,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that
flxy) — f(x") < g;;(xt — x™) def. subgradient,

— &(xt — x;41) ' (x; — x*) definition of GD,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

flxy) — f(x") < g;;(xt — x™) def. subgradient,
1

= —(x — x;41) " (¢ — x¥) definition of GD,
X +
1 f)2 2 .12 :
= — (IIxe = x5+ Il = xpsa 3 = 141 — x°J3) law of Cosines,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

flxy) — f(x") < g;;(xt — x™) def. subgradient,

1
= (xt — xp11) | (x; — x*) definition of GD,

1
= ( xp —x* % + |lxp — xt+1H% — || xpp1 — x*H%) law of Cosines,

1 I
= (llx = ¥"115 = ¥ = ¥°113) + 5 l|gx 3 Def. of GD,

Optimization for Machine Learning



Analysis of GD for L-Lipschitz

Proof. 1t holds that

flxy) — f(x") < g;;(xt — x™) def. subgradient,
1

= (xt — x41) ' (x; — x*) definition of GD,
= 5 (=" 3+ lxe = 113 — 1 — 7 3) Taw of Cosines,
= o (It =B = xesn = x°[3) + 5 g, I3 Def. of GD,

< L (=13~ 5121~ x° ) + %2 Exercise 3

Exercise 3 (General case). Suppose f(x) is L-Lipschitz continous and
of (x) # @. Then Vx € dom(f)

|gx|l, < L where gx € 9f(x).
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Analysis of GD for L-Lipschitz

Proof cont. Since

* 1 * (|2 %112 “Lz
Fle) = F) < o (llxe =13 = lxa =27 [3) + 55,

taking the telescopic sum we have

1 4 % 1 %12 112 DéLz
= Y f) = F(x) < szl = 2B = e — 27 [B) + 5
f=1
< R’ + aL? = € by choosing appropriately a, T
= 50T 5 y g approp y &, L.

The claim follows by convexity since % Zle flxy) > f (% Zf:l f (ﬂﬁt))

(Jensen’s inequality).
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Stochastic Gradient Descent (SGD)

Definition (Stochastic Gradient Descent). Let f : R? — R be convex
(want to minimize). The algorithm below is called stochastic gradient descent

Xk+1 — Xk — &k UOk,
where E|vg|xi | € 9f (xx).

Remarks
* qay is called the stepsize. Intuitively the smaller, the slower the algorithm.

* a; must depend on k (vanishing to talk about convergence).
* v, and moreover xj are random vectors!
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Analysis of SGD for u-convex

Theorem (Stochastic Gradient Descent). Let f : R? — R be u-strongly convex
(want to minimize). Moreover assume that E[||vy||*] < p2. Let x* be a minimizer.
It holds for oy = ﬁ,

E

1 N
f (th:xt)] — f(x*) < 2‘u+T(l—|—lo‘gT).

Remarks
1 : L
* a scales as . and is vanishing to talk about convergence.

* ForT =0 elogg) we get error €.
e Rakhlin, Shamir & Sridharan (2012) derived a convergence rate

in which the log T is eliminated for a variant.
* Shamir & Zhang (2013) shown theorem above for last iterate x7!
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Analysis of SGD for u-convex

Proof of Theorem. Set V! = E[v;|x;].

From strong convexity we get

(xt = x*) TV = flxe) = f(x") + 5 |l — %73
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Analysis of SGD for u-convex

Proof of Theorem. Set V! = E[v;|x;].

From strong convexity we get
E|(xi =)V 2B | f(x) = f(*) + 5l = x[13].

Claim.

2 2
IE[th_X*”z_ | x¢41 _X*”z] Xt 2

E[(x; —x) V'] < + R

2061}

Proof of Claim. Law of Cosines gives

2
e — 2% [I3 = [l 21 — 2% 13 = 2 (xe — x7) Tor — af [|oy 3

Law of total expectation ... Tower property!
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Analysis of SGD for u-convex

Proof of Cont.

Combining the two above we get (lin. expectation)

2 2
Bl — 3 (1= ape) — frin = [3] | i o
20¢t 2 '

E[f(xe) = f(x7)] <
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Analysis of SGD for u-convex

Proof of Cont.

Combining the two above we get (lin. expectation)

2 2
e = x* 13 (1~ aop) = xasn = x 1] | e
20¢t 2 '

E[f(x) — f(x)] < &

Therefore (lin. expectation), recall a; = %,

2

1
E -
t

%;f(m] f) S B [pT e = x3] + 5 g

=13
~| -
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Analysis of SGD for u-convex

Proof of Cont.

Combining the two above we get (lin. expectation)

E [f(x;) — f(x*)] < CU% — x5 (1 —ap) — [xea — (3] | &

2(Xt * 2 o
Therefore (lin. expectation), recall a; = %,
1 . 2] Pt 11
_ _ < _ _ r_ - —
E T;ﬂxt)] F) < B [pT ler =" 5] + 2 1

- 0> (1+1logT
— 2u T '
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Analysis of SGD (general)

Theorem (Stochastic Gradient Descent). Let f : R? — R be a convex function
(want to minimize). Moreover assume that |vk||, < p with probability one.
Let x* be a minimizer. It holds for & = 7

)0

1 : _ :
* a scales as \/; and is vanishing to talk about convergence but fixed!

Remarks

* ForT =0 (iz) we get error €.
€
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Analysis of SGD (general)

Proof. (Recall and add expectation)

Eq.r [f(x¢) — f(x*)] < Epp[(x — x*) ' V]
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Analysis of SGD (general)

Proof. (Recall and add expectation)

Exi.r [f(x¢) — f(x*)] < Epr[(x — x*) ' V7]
— El:t—l[]ElzT[(xt o x*)vaV)l, e Ut—l]]
= Ep.7[(xt — x*)] ' E14_1[V'|o1, ..., 04 1]

= Ep.r[(xt — x*)] "o
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Analysis of SGD (general)

Proof. (Recall and add expectation)

E1.r [f(x:) — f(x*)] < Err[(x: — x*) TV

= Ey.r[(xt — x*)] " E14-1[V'[01, ..., 1]

= Ev.r[(x —x%)] "o Recall ||vt|| < p!

[ 1 2 2 44 2
<Eur |0 (=% 1B v - x'13) | + %
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Analysis of SGD (general)

Proof. (Recall and add expectation)

Epr [f(x) — f(x*)] < Eprp[(x — x*) V]
= Eq41[Er.r[(xt — x*) " Vo, ..., 001]]

= Ey.r[(xt — x*)] " E14-1[V'[01, ..., 1]

= Ev.r[(x —x%)] "o Recall ||vt|| < p!

1 * |12 * (|2 “Pz
< Eqir 2% (||xt =Xy = llxer —x Hz)] T
Taking the telescopic sum we have
1 R?  ap?
Ei.7 | = — f(x")| < :
| 7 L0 = )| < gr + 5
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Example: Coordinate Descent

Definition (Coordinate Descent). Let f : RY — R be convex differentiable
function in some convex set X. CD is defined iteratively:

of (xx)
8xl-

Choose coordinate i € |d] and update xj,1 = xp — oy e;.

Remarks
* Similar guarantees with GD as long as each coordinate is taken often.
* |f coordinate i is chosen uniformly at random, then instantiation of ?.
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Conclusion

* Introduction to Subgradients and SGD.

— Same guarantees as for differentiable functions.

— SGD has rate of convergence O G In i) for

[L-CONVEX.
— Next Lecture we will see examples related to MLE.

* Next week we will talk about online
learning/optimization!
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