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Lecture 1. Convex Optimization and Gradient Descent.

1 Introduction

In machine learning tasks, especially for supervised learning, we always look for a function with

some parameters θ ∈ Θ, that can minimize the distance between the real labels and prediction

results, generated by the mentioned function. We call this “distance” as Loss function, or the

objective.

Given n sample pairs of input data and labels (xi, yi), where xi is the input (e.g. voice signal,

pixels, . . . ) and yi is the true label of each input, (e.g. gender of people, type of fruit . . . ), we want

to minimize the (average) distance between the predicted label f(xi, θ) and the true label:

L(θ) =
1

n

n∑
i=1

l(f(xi, θ), yi) (1)

However, solving minx∈χL(θ) in general is NP-hard(computational intractable). In this chapter,

we restrict our objective to only convex functions for easier analysis, as they have strong theoret-

ical guarantees and efficient optimization algorithms, and will be applying Gradient Descent to

minimize the loss function.

2 Definitions

Let us first define some fundamental quantities to use later.

2.1 Convex Combination

z ∈ Rd is a convex combination of x1, x2, . . . , xn ∈ Rd if:

z =
∑

λixi, λ ≥ for all i and
∑
i

λi = 1 (2)

2.2 Convex Set

X is a convex set if the convex combination of any two points in X also belongs in X . The following

figure depicts the relationship.
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Figure 1: Schematic Diagram of Convex vs Non-Convex Set

2.3 Convex Function

A function f(x) is convex iff the domain dom(f) is a convex set and ∀x, y ∈ dom(f), t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (3)

This is known as Jensen’s Inequality. Graphically, any line that intersects the function at two

points should be above the function, as the following figure shows:

Figure 2: Convex vs. Non-Convex Function

Note: a concave function f will result in the reverse inequality. And f is called strictly convex

when the inequality is < instead of ≤.

2.4 Conditions for Convexity

Lemma 2.1 (First Order Condition (FOC)) A differentiable function f(x) is convex iff dom(f)

is a convex set and ∀x, y ∈ dom(f),

f(y) ≥ f(x) +∇f(x)>(y − x) (4)
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Figure 3: FOC for convexity: the tangent hyperplane at any point always gives values less than

the function value of any other point.

Proof: If f is convex, then:

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x) (5)

Rearranging and dividing by t:

f(x+ t(y − x)) ≤ t(f(y)− f(x)) + f(x)

f(y)− f(x) ≥ f(x+ t(y − x))− f(x)

t

Hence

f(y)− f(x) ≥ lim
t→0

f(x+ t(y − x))− f(x)

t
= ∇f(x)>(y − x) (6)

Now we need to show the FOC implies convexity. Choose first z = tx+ (1− t)y for t ∈ (0, 1), then

f(x) ≥ f(z) +∇f(z)>(x− z) (7)

f(y) ≥ f(z) +∇f(z)>(y − z) (8)

Multiply (7) by t and (8) by (1− t) and add them up, we have:

tf(x) + (1− t)f(y) ≥ f(z) + t∇f(z)>(x− z) + (1− t)∇f(z)>(y − z)
= f(z) +∇f(z)>(tx− tz) +∇f(z)>((1− t)(y − z))
= f(z) +∇f(z)>(tx− tz + y − ty − z + tz)

= f(z) +∇f(z)>(tx+ (1− t)y − z)
= f(z) +∇f(z)>(0)

= tf(y) + (1− t)f(x)

Lemma 2.2 (Second Order Condition) A twice-differentiable function f(x) is convex iff dom(f)

is a convex set and ∀x ∈ dom(f), the Hessian is positive semi-definite.

∇2f(x) � 0 (9)
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Proof: By convexity we have:

f(y) ≥ f(x) +∇f(x)>(y − x) (10)

f(x) ≥ f(y) +∇f(y)>(x− y) (11)

Rearrange the equations, we have

∇f(x)>(y − x) ≤ f(y)− f(x) ≤ ∇f(y)>(y − x) (12)

Dividing both side by (y − x)2

∇f(y)> −∇f(x)>

y − x
≥ 0 (13)

2.5 Lipschitz Continuity

A function f : Rb −→ Rd‘ is L-Lipschitz continuous ⇐⇒ for L > 0 and ∀x, y ∈ dom(f) we have:

‖f(x)− f(y)‖2 ≤ L‖x− y‖2 (14)

This means the function must stay outside a double cone of steepness L. Like usual definitions of

continuity (pointwise or uniform), it doesn’t allow jumps, but it is stricter than just continuous.

Figure 4: The function on the left is L-continuous but
√
x on the right is not L-continuous, the

gradient becomes infinitely steep at 0.

2.6 Smoothness

A continuously differentiable function f(x) is L-smooth if its gradient is L-Lipschitz, i.e., there

exists a L > 0 and ∀x, y ∈ dom(f)

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 (15)

The function |x| is L-continuous but not L-smooth, since ∇f(x) − ∇f(y) = 2 when x = 0+ and

y = 0−.
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One important consequence of L-smoothness is this: there is a maximum bound on the difference

between f(y) and the predicted f(y) if you drew a tangent line from x to y.

Claim 2.3 Let f be a differentiable and L-smooth, then:

f(y)− f(x)−∇f(x)>(y − x) ≤ L

2
‖y − x‖22 (16)

Proof: For a differentiable function f(x), the difference in the f-value of x, y is simply the sum of

the small differences from x to y:

f(y)− f(x) =

∫ y

x
∇f(z)dz (17)

set z = ty + (1− t)x (18)

f(y)− f(x)−∇f(x)>(y − x) =

∫ y

x
∇f(z)dz −∇f(x)>(y − x) (19)

=

∫ 1

0
∇f>(x+ t(y − x))(y − x)dt−∇f>(y − x) (20)

=

∫ 1

0

[
∇f>

(
x+ t(y − x)−∇f>(x)

)]
(y − x)dt (21)

For two vectors, we know that a · b ≤ ‖a‖‖b‖

≤
∫ 1

0

∥∥∥∇f> (x+ t(y − x)−∇f>(x)
)∥∥∥ ‖y − x‖dt (22)

Now apply L-smooth definition

≤
∫ 1

0
L‖x+ t(y − x)− x‖‖y − x‖dt (23)

=

∫ 1

0
tL‖y − x‖‖y − x‖dt (24)

=

∫ 1

0
tdtL‖y − x‖22 (25)

=
L

2
‖y − x‖22 (26)

2.7 Strongly Convex

A function f(x) is µ-strongly convex if for α > 0 and ∀x ∈ dom(f):

f(x)− µ

2
‖x‖22 is convex (27)
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If a µ-strongly convex function g(x) is differentiable, then ∀x, y ∈ dom(g), by applying the definition

for convexity we have:

g(y)− g(x) ≥ ∇g(x)(y − x)

f(y)− µ

2
‖y‖2 ≥ f(x)− µ

2
‖x‖2 +∇(f(x)− µ

2
‖x‖2)>(y − x)

f(y)− f(x) ≥ µ

2
(‖y‖2 − ‖x‖2) +∇f(x)>(y − x) +

µ

2
(−2x>y + 2‖x‖2)

= ∇f(x)>(y − x) +
µ

2
(‖y‖2 − 2x>y + ‖x‖2)

= ∇f(x)>(y − x) +
µ

2
‖y − x‖2

Note that this is similar to the L-smooth claim before, but with the inequality reversed (i.e. there

is a lower bound on the difference between f(y) and the predicted f(y). Hence strongly-convex

functions are generally O(x2).

2.8 Minimizing Convex Functions

Lemma 2.4 (Gradient Zero) Let f : Rd → R be differentiable and convex. x∗ is a minimizer iff

∇f(x∗) = 0. Hence all minimizers give same f -value, i.e f(x∗1) = f(x∗2).

If ∇f(x∗) = 0, then from convexity:

f(y) ≥ f(x∗) +∇f(x∗)>(y − x∗)
= f(x∗)

(28)

For some small t > 0, let y = x∗ − t∇f(x∗) ∈ f . By Taylor expansion of f(y),

f(y) = f(x∗) +∇f(x∗)>(y − x∗) + o(‖y − x∗‖2)
= f(x∗)− t‖∇f(x∗)‖2 + o(‖t∇f(x∗)‖2)

(29)

Small t means −t‖∇f(x∗)‖2 dominates, and if ∇f(x∗) 6= 0, f(y) < f(x∗) (x∗ isn’t a minimizer

anymore). Hence ∇f(x∗) must be 0.
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3 Gradient Descent Algorithm

3.1 Gradient Descent (GD)

Now that we have defined the classes of objective functions to minimize, we use Gradient Descent [1]

to optimize the function.

Definition 3.1 (Gradient Descent) Let f : Rd → R be our objection function and differentiable.

xt+1 = xt − α∇f(xt) (30)

where α is the step-size or learning rate. Smaller α makes convergence slower, but larger α may

make the algorithm oscillate.

We will show, given appropriate choices of α, that the GD estimate converges for the above classes

of functions:

Class α Type of Convergence Rate of Convergence

L-continuous
ε

L2
Average: f

(
1

T

∑
xT

)
→ f(x∗) O

(
L2

ε2

)
L-smooth

1

L
Value: f(xT )→ f(x∗) O

(
L

ε

)
µ-strongly convex

1

L
Point: xT → x∗

L

µ
ln

1

ε

Figure 5: Covergence for different classes of objective function

where R = ‖x0−x∗‖2 is the distance between starting point and minimizer, L and µ are as defined

previously, and ε = ‖f(xT )− f(x∗)‖2 is the max allowed error.

3.1.1 Analysis of GD for L-continuous

Theorem 3.1 (Gradient Descent for L-continuous) Let f : Rd → R be differentiable, convex

and L-Lipschitz. Let R = ‖x0 − x∗‖2 be the distance between the initial point x0 and minimizer

x∗.It holds for T = R2L2

ε2
that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε (31)

with appropriate choosing α = ε
L2 . This L-Lipschitz GD gives a rate of O

(
1
ε2

)
but we can optimize

it further in the next part.

Proof:[for Theorem 3.1] It holds that from FOC for convexity functions we have

f(xt)− f(x∗) ≤ ∇f>(xt)(xt − x∗) (32)

then, by substituting ∇f>(xt) with definition of GD, we get

f(xt)− f(x∗) ≤ 1

α
(xt − xt+1)

>(xt − x∗) (33)
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From the law of Cosines, i.e. For a triangular with sides a, b and c, we have

c2 = a2 + b2 − 2a>b (34)

with a = (xt − xt+1), b = (xt − x∗), c = (xt+1 − x∗),then

f(xt)− f(x∗) ≤ 1

2α

(
‖xt − x∗‖22 + ‖xt − xt+1‖22 − ‖xt+1 − x∗‖22

)
(35)

=
1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
α

2
‖∇f(xt)‖22 (36)

Supposing that f is L− Lipschitz continuous , then ∀x ∈ dom(f) exists

‖∇f(x)‖2 ≤ L (37)

therefore,

f(xt)− f(x∗) =
1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
(38)

Summing from 1 to T:

1

T

T∑
t=1

f(xt)− f(x∗) ≤ 1

2αT

T∑
t=1

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
(39)

Taking the telescopic sum, the terms cancel, leaving the first and last:

≤ 1

2αT

(
‖x1 − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
(40)

≤ R2

2αT
+
αL2

2
= ε (41)

Finally, from Jensen’s inequality it induces the[2]

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε (42)

Note that this theorem does not imply the point-wise convergence like f(xT )→ f(x∗).

3.1.2 Analysis of GD for L-smooth

Theorem 3.2 (Gradient Descent for L-Smooth) Let f : Rd → R differentiable, convex and

L-Smooth. Let R = ‖x1 − x∗‖2 be the distance between the initial point x1 and minimizer x∗. It

holds for T =
LR2

ε
that

f(xt+1)− f(x∗) ≤ ε (43)

with appropriate choosing α = 1
L . This L-Smooth GD gives a rate of O

(
1

ε

)
but we can optimize

it further in the next part.
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Proof:[for Theorem 3.2] Let’s first try to find an expression for on the f -value improvement with

each iteration, f(xt+1)− f(xt). We can sum it up later to obtain the total improvement we need.

From L-smoothness (see Claim 2.3) we have:

f(xt+1)− f(xt) ≤ ∇f(xt)
>(xt+1 − xt) +

L

2
‖xt+1 − xt‖22

= − 1

L
‖∇f(xt)‖22 +

L

2
∗ 1

L2
‖∇f(xt)‖22

= − 1

2L
‖∇f(xt)‖22

‖∇f(xt)‖2 ≤ 2L(f(xt)− f(xt+1))

For simplicity, let us denote δt = xt−x∗ and ∇t = ∇f(xt). We already have some bound on ‖∇t‖2

above, and we want to force it out. ∇t appears in gradient descent: xt+1 − x∗ = xt − x∗ −
1

L
∇t.

So we square both sides to get positive values and the ‖∇t‖2:

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 +
1

L2
‖∇t‖2 −

2

L
(xt − x∗)>∇t

Because f is convex, (xt − x∗)>∇t ≥ δt

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 +
1

L2
‖∇t‖2 −

2

L
δt

‖xt+1 − x∗‖2 − ‖xt − x∗‖2 ≤
1

L2
‖∇t‖2 −

2

L
δt

Summing from 1 to t, we can see that the left side reduces to the first and last terms.

‖xt+1 − x∗‖2 − ‖x1 − x∗‖2 ≤
1

L2

∑
‖∇t‖2 −

2

L

∑
δt

Now ‖xt+1 − x∗‖2 must be ≥ 0 and ‖x1 − x∗‖2 = R2

−R2 ≤ 1

L2

∑
‖∇t‖2 −

2

L

∑
δt

δt is decreasing. Thus
∑
δt ≥ tδt

−R2 ≤ 1

L2

∑
‖∇t‖2 −

2t

L
δt

Now we need to find a bound for
∑
‖∇t‖2. Fortunately we did it earlier!∑

‖∇t‖2 ≤
∑

2L(f(xt)− f(xt+1)

= 2L(f(x1)− f(xt+1)

≤ 2L(f(x1)− f(x∗)) since f(x∗) ≤ f(xt+1)
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From L-smoothness (Claim 2.3) we know

f(x1)− f(x∗)−∇f(x∗)>(x1 − x∗) ≤
L

2
‖x1 − x∗‖2

f(x1)− f(x∗)− 0 · (x1 − x∗) ≤
L

2
R2

Hence, ∑
‖∇t‖2 ≤ 2L

(
LR2

2

)
= L2R2

Now we sub this back into where we left off:

−R2 ≤ 1

L2

∑
‖∇t‖2 −

2t

L
δt

≤ 1

L2
(L2R2)− 2t

L
δt

−2R2 ≤ −2t

L
δt

δt ≤
LR2

t

Thus the minimum number of steps T to reach δt ≤ ε is LR2/ε.

Theorem 3.3 (Gradient Descent for L-smooth and µ-convex) Let f : Rd → R differen-

tiable, µ-convex and L-Smooth. Let R = ‖x0 − x∗‖2 be the distance between the initial point

x0 and minimizer x∗.It holds for T = 2L
µ ln(Rε ) that

‖xT − x∗‖22 ≤ ε (44)

with appropriate choosing α = 1
L . This µ-convex and L-smooth function GD gives a rate of O

(
ln 1

ε

)
Proof:[for Theorem 3.3] Consider the left side of the inequality, we have

‖xT − x∗‖22 = ‖xT−1 −
1

L
∇f(xT−1)− x∗‖22 (45)

= ‖xT−1 − x∗‖22 +
1

L2
‖∇f(xT−1)‖22 −

2

L
∇f(xT−1)

>(xT−1 − x∗)) (46)

since f is µ-strong convex and L-smooth, from 2.7 and 3.1.2

2

L
∇f(xT−1)

>(x∗ − xT−1) ≤
2

L
(f(x∗)− f(xT−1))−

µ

L
‖x∗ − xT−1‖22 (47)

≤ − 1

L2
‖∇f(xT−1)‖22 −

µ

L
‖x∗ − xT−1‖22 (48)

then ‖xT − x∗‖22 ≤ (1− µ

L
)‖xT−1 − x∗‖22 (49)

≤ (1− µ

L
)>R2 ≤ e−

µT
L R2 (50)

substituting T = 2L
µ ln R

ε we get

‖xT − x∗‖22 ≤ ε (51)

Note that in this theorem, it will convergence at last iteration.
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3.2 Projected Gradient Descent

In previous settings, we focus on how to find solutions of the unconstrained optimization problem.

However, in general machine learning problems we are likely to encounter some constrained prob-

lems. In this subsection, we discuss how to solve constrained optimization problem:

minx∈X f(x)

where f is a convex function and X is a convex set. Consider that when we use gradient descent

to update the xt by step-size α, or xt+1 = xt − α∇f(x), it is possible that xt+1 may not belong

to the constraint, i.e. convex set X . In this part, we introduce Projected Gradient Descent to deal

with the issue.

Definition 3.2 (Projected Gradient Descent) The projection of a point y, onto a set X is

defined as the nearest point in the set to y.

ΠX (y) = argminx∈X
1

2
‖x− y‖22

Let f: Rd be differentiable function in some convex set X . The algorithm below is called Projected

Gradient Descent:

xt+1 = ΠX (xk − α∇f(xk)) (52)

where the projection GD may not be that efficient and the minimizer x∗ does not necessarily satisfy

∇f(x∗) = 0.

In this part, we mainly analysis the Projected Gradient Descent for L-lipschitz

Theorem 3.4 (Projected Gradient Descent) Let f : Rd → R be differentiable, convex and

L-Lipschitz. Let R = ‖x0 − x∗‖2 be the distance between the initial point x0 and minimizer x∗.It

holds for T = R2L2

ε2
that

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε (53)

with appropriate choosing α = ε
L2 . Same guarantees as in the unconstrained case.

Proof:[for Theorem 3.4] Set y := xt − α∇f(xt). It holds that from FOC for convexity functions

we have

f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗) (54)

then, by substituting ∇f(xt)
> with definition of GD, we get

f(xt)− f(x∗) ≤ 1

α
(xt − yt)>(xt − x∗) (55)

From the law of Cosines, i.e. For a triangular with sides a, b and c, we have

c2 = a2 + b2 − 2a>b (56)
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with a = (xt − xt+1), b = (xt − x∗), c = (xt+1 − x∗),then

f(xt)− f(x∗) ≤ 1

2α

(
‖xt − x∗‖22 + ‖xt − yt‖22 − ‖yt − x∗‖22

)
(57)

=
1

2α

(
‖xt − x∗‖22 − ‖yt − x∗‖22

)
+
α

2
‖∇f(xt)‖22 (58)

Recall that f is L− Lipschitz continuous , then ∀x ∈ dom(f) exists

‖∇f(x)‖2 ≤ L

Therefore,

f(xt)− f(x∗) ≤ 1

2α

(
‖xt − x∗‖22 − ‖yt − x∗‖22

)
+
αL2

2
(59)

Stop here and introduce the Claim.

Claim 3.5 For projection of a point y, it holds that:

(ΠX (y)− x)>(ΠX (y)− y) ≤ 0

Proof:[for Claim 3] From the following figure

Figure 6: Projection of a point y on Convex Set

Since the projection property on the convex set, it is true that ‖y − x‖ must be the longest side of

the triangular. Hence, from law of Cosines we have

‖y − x‖22 ≥ ‖ΠX (y)− y‖22 + ‖ΠX (y)− x‖22

Therefore cos〈ΠX (y)− y,ΠX (y)− x〉 < 0. It is proved.

Then, continue to prove Theorem 3.4. From Claim 3 we have:

‖yt − x∗‖22 ≥ ‖xt+1 − yt‖22 + ‖xt+1 − x∗‖22 (60)

≥ ‖xt+1 − x∗‖22 (61)
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Note that xt+1 is in the Convex Set X , since

f(xt)− f(x∗) ≤ 1

2α

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
(62)

Taking the telescopic sum we have

1

T

T∑
t=1

f(xt)− f(x∗) ≤ 1

2αT

(
‖x1 − x∗‖22 − ‖xt+1 − x∗‖22

)
+
αL2

2
(63)

≤ R2

2αT
+
αL2

2
= ε (64)

Finally, from Jensen’s inequality it induces the

f

(
1

T

T∑
t=1

xt

)
− f(x∗) ≤ ε (65)

It is the same as classic Gradient Descent.
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