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Basics

Optimization for Machine Learning

Many machine learning problems involve learning parameters                of a function, 
towards achieving an objective. Objectives are characterized by a loss function

Typically solving is NP-hard (computationally intractable).

Example in supervised learning given 𝑛 samples (𝑥𝑖 , 𝑦𝑖) where 𝑥 is the input:

Goal:



Basics
Many machine learning problems involve learning parameters                of a function, 
towards achieving an objective. Objectives are characterized by a loss function

Typically solving is NP-hard (computationally intractable).

Nevertheless, for certain classes of functions 𝑓, strong theoretical guarantees and 
efficient optimization algorithms exist!

• Classes of functions 𝑓: Convex!
• Algorithm: Gradient Descent!

Example in supervised learning given 𝑛 samples (𝑥𝑖 , 𝑦𝑖) where 𝑥 is the input:

Goal:
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Definitions cont.
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Convex function Non-convex function

Concave function 𝑓: −𝑓 is convex, i.e., inequality above is reversed! 
Moreover, if the inequality is strict, 𝑓 is called strictly convex.
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More Definitions
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𝐿𝑓-Lipschitz continuous function 𝑓 and a 𝐿𝑔-Lipschitz 

continuous function 𝑔 with 𝐿𝑓 > 𝐿𝑔.
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Minimizing convex functions
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• We examine this class of functions because are easier to minimize.
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Gradient Descent (GD) (for differentiable functions)
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Remarks
• 𝛼 is called the stepsize. Intuitively the smaller, the slower the algorithm.
• 𝛼 may or may not depend on 𝑘.
• If GD converges, it means that ∇𝑓 𝑥 → 0, so we should have
“convergence” to the minimizer (for 𝑓 convex)!
• The minimizers of 𝑓 are fixed points of GD. 



Analysis of GD for 𝐿-Lipschitz
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Remarks
• The speed of convergence is independent of dimension 𝑑.

• This result gives a rate of O
1

𝜖2
. With smoothness assumptions we can do O

1

𝜖
.

• There is Nesterov’s accelerated method that can achieve O
1

𝜖
(under smoothness).

• With smoothness and strong-convexity assumptions we can do O ln
1

𝜖
.

• The theorem does not imply pointwise convergence 𝑓(𝑥𝑇) → 𝑓(𝑥∗).



Analysis of GD for 𝐿-Lipschitz

Optimization for Machine Learning



Analysis of GD for 𝐿-Lipschitz

Optimization for Machine Learning



Analysis of GD for 𝐿-Lipschitz

Optimization for Machine Learning



Analysis of GD for 𝐿-Lipschitz

Optimization for Machine Learning



Analysis of GD for 𝐿-Lipschitz
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Analysis of GD for 𝐿-smooth
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Remarks
• Again speed of convergence is independent of dimension 𝑑.

• This result gives a rate of O
1

𝜖
, different choice of stepsize.

• The theorem implies convergence 𝑓(𝑥𝑇) → 𝑓(𝑥∗).
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Before showing the proof, we show some important claims for 𝐿-smooth 
functions.
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Analysis of GD for 𝐿-smooth, 𝜇-convex
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Analysis of GD for 𝐿-smooth, 𝜇-convex
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Remark (last iterate convergence!): 𝒙𝑻 → 𝒙∗



Projected Gradient Descent (GD) 
(for differentiable functions)
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Remarks
• The projection might not be efficient (is also an optimization problem)!!
• The minimizer 𝑥∗ does not necessarily satisfy ∇𝑓 𝑥∗ = 0.

Question: When the last remark can be true?



Analysis of Projected GD for 𝐿-Lipschitz
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Remark
• Same guarantees as in the unconstrained case.
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Analysis of Projected GD for 𝐿-Lipschitz
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Analysis of Projected GD for 𝐿-Lipschitz

Same as in classic GD!



Conclusion

• Introduction to Convex Optimization
– Easy to minimize (generally is NP-hard).

– GD has rate of convergence O
𝐿2

𝜖2
for 𝐿-Lipschitz.

– GD has rate of convergence O
𝐿

𝜖
for 𝐿-smooth.

– GD has rate of convergence O
𝐿

𝜇
ln

1

𝜖
for 𝐿-smooth, 𝜇-convex.

– Same is true for Projected GD (similar analysis) for constrained 
optimization.

• Next week we will talk about sub-gradients (non-
differentiable functions) and Stochastic Gradient Descent
(SGD).

SUTD ISTD 50.004 Intro to Algorithms 


