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Basics

Many machine learning problems involve learning parameters 8 € O of a function,
towards achieving an objective. Objectives are characterized by a loss function L : © — R.

Example in supervised learning given n samples (x;, y;) where x is the input:

distance between y; and f(x;,0)

~

LO)=>7" U f(x,0), v ) Goal: mingee L(6)
prediction label

Typically solving min, ¢ x f(:L') is NP-hard (computationally intractable).
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Basics

Many machine learning problems involve learning parameters 8 € O of a function,
towards achieving an objective. Objectives are characterized by a loss function L : © — R.

Example in supervised learning given n samples (x;, y;) where x is the input:

distance between y; and f(x;,0)

~

LO)=>7" U f(x,0), v ) Goal: mingee L(6)
prediction label

Typically solving min, ¢y f(ac') is NP-hard (computationally intractable).

Nevertheless, for certain classes of functions f, strong theoretical guarantees and
efficient optimization algorithms exist!

* Classes of functions f: Convex!
e Algorithm: Gradient Descent!
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Definitions

Definition (Convex combination). z € R? is a convex combination of
x1,x2,...,x, € R? if

z = Z/\ixi, Ai >0 for all i and ZAi = 1.
1
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Definitions

Definition (Convex combination). z € R? is a convex combination of
x1,x2, ..., x, € R? if

z = Z/\ixi, Ai >0 for all i and ZAi = 1.
1

Definition (Convex set). X is a convex set if the convex combination
of any two points in X belongs also in X.

Convex set Non-convex set
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Definitions cont.

Definition (Convex function). A function f(x) is convex if and only if
the domain dom(f) is a convex set and Vx,y € dom(f),6 € [0,1]

fOx+(1=0)y) <6f(x)+(1—-06)f(y)-

Concave function f: —f is convey, i.e., inequality above is reversed!
Moreover, if the inequality is strict, f is called strictly convex.

A

J) ftx)
J(6x +(1-8)y)

8f(x) + (1-0)f(y) 8f9) + (1-)f1y)

)
[0+ (1-8)y)

f)

I 1 :
X Ox+(1-8)y vy x  ex+(1-0)y »

Convex function Non-convex function
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Basic Facts

Lemma (First order condtion for convexity). A differentiable function

f(x) is convex if and only if the domain dom(f) is a convex set and
Vx,y € dom(f)

fy) = f(x)+Vf(x)' (y—x).

Proof. (=)By convexity we have that (for all ¢ > 0)

flty+ (1 =t)x) <tf(y) + (1 =) f(x).

Rearranging a bit follows

flx+ty —x)) <Hf(y) = f(x) + f(x).

Dividing by t we conclude:

f(]/) —f(x) > f(x+t(y_x)) _f(x).

t
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Basic Facts

Proof (=) cont. Hence

) — f) 2 lim LI 20 _ Grgriy )

=0 t

-

Y

directional derivative
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Basic Facts

Proof (=) cont. Hence

) — f) 2 lim LI 20 _ Grgriy )

=0 t

-

Y

directional derivative

Proof. (<) Choose first z = tx 4+ (1 — t)y for t € (0,1) and moreover it holds
that

o« f(x) > f(z2) +Vf(z) (x—2).

o fy) 2 f2) +Vf(2) ' (y—2).
Multiply first by t, second by (1 — t) and add them up.
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Basic Facts cont.

Lemma (Second order condtion for convexity). A twice differentiable
function f(x) is convex if and only if the domain dom(f) is a convex set and

Vx € dom(f) V() = 0.

In words, the Hessian of f should be positive semi-definite.

Proof. Exercise 1 for homework...
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More Definitions

Definition (Lipschitz function). A function f : R — R? is L-Lipschitz
continuous iff for L > 0 and Vx,y € dom(f)

1F(x) = fFW)ll2 = Lllx—yll-

Jx)

2(x)

f)

g

L¢-Lipschitz continuous function f and a L,-Lipschitz
continuous function g with Ly > L.
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More Definitions cont.

Definition (Smoothness). A continuously differentiable function f(x)
is L-smooth if its gradient is L-Lipschitz, i.e., there exists a L > 0 and

Vx,y € dom(f)
IVFx) =V Wl < Lilx =yl

Definition (Strongly convex). A function f(x) is a-strongly convex if
for o« > 0 and Vx € dom(f)

f(x)— % |x||5 is convex.

Exercise 2. Suppose f(x) is differentiable and a-strongly convex.
Then Vx,y € dom(f)

Fly) = () = V@) Ty —x) + 5 lly — x5
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Minimizing convex functions

* We examine this class of functions because are easier to minimize.

Lemma (Gradient zero). Let f : R? — R be differentiable and convex.
x* is a minimizer if and only if V f(x*) = 0. Hence all minimizers give
same f-value.

Proof. (<=)By FOC for convexity we have that Vx € dom(f)

fx) 2 f(x") + V(") " (x —27) = f(x7).
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Minimizing convex functions

* We examine this class of functions because are easier to minimize.

Lemma (Gradient zero). Let f : R? — R be differentiable and convex.
x* is a minimizer if and only if V f(x*) = 0. Hence all minimizers give
same f-value.

Proof. (<)By FOC for convexity we have that Vx € dom(f)

fx) 2 f(x") + V(") " (x —27) = f(x7).

Proof. (=) Choose t > 0 small enough such that y := x* — tVf(x*) is in
dom(f). By Taylor we have

fly) = f(x*) = Vf(*)  (y = 2) +o(ly — x7[|,)
= —t| V) 5+ o[tV F(x)],).

For t small enough f(y) — f(x*) < 0if Vf(x*) # 0 (contradiction).

Optimization for Machine Learning



Grad|ent DeSCG nt (G D) (for differentiable functions)

Definition (Gradient Descent). Let f : R? — R be differentiable
(want to minimize). The algorithm below is called gradient descent

Xpr1 = X — aVf(xg).

Remarks
* «is called the stepsize. Intuitively the smaller, the slower the algorithm.

* a may or may not depend on k.

* |If GD converges, it means that Vf(x) — 0, so we should have
“convergence” to the minimizer (for f convex)!

* The minimizers of f are fixed points of GD.

Optimization for Machine Learning



Analysis of GD for L-Lipschitz

Theorem (Gradient Descent). Let f : R? — R be differentiable, convex

(want to minimize) and L-Lipschitz. Let R = ||x1 — x*||,, the distance
between the initial point xo and minimizer x*. It holds for T = R;Lz

1 T
f (f Z'ixt) —f(x") <e,
f—

£

with appropriately choosing « = 5.

Remarks
* The speed of convergence is independent of dimension d.

. : 1 . . 1
This result gives a rate of O (5) . With smoothness assumptions we can do O (E)

Ve
: : : 1
With smoothness and strong-convexity assumptions we can do O (ln Z)'

: , . 1
There is Nesterov’s accelerated method that can achieve O (—) (under smoothness).

The theorem does not imply pointwise convergence f(x7) = f(x™).
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that
fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1
— &(xt — x;41) ' (x; — x*) definition of GD,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
1

= —(x — x;41) " (¢ — x¥) definition of GD,
X +
1 f)2 2 .12 :
= — (IIxe = x5+ Il = xpsa 3 = 141 — x°J3) law of Cosines,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

1
T 2a
1
T 2a

(
(

xp—x*

x;—x*

2

2
2

5 T

= (xt — xp11) | (x; — x*) definition of GD,

Xt — Xep |5 = |l — X H%) law of Cosines,

. o
X1 = x°3) + 5 IV f(x:)[3 Def. of GD,
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Analysis of GD for L-Lipschitz

Proof. 1t holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

_1
2
_1
2

1
_204

2
2

2

= (xt — xp11) | (x; — x*) definition of GD,

xp — X5 4 || — xexa |5 — || — x*H%) law of Cosines,
X
xp— 2% — ||t — x*y|§) + 2 ||V f(x;)]|* Def. of GD,
ocL2
(th — x| = e — x Hz) + =~ Exercise 3.

Exercise 3. Suppose f(x) is L-Lipschitz continous.

Then Vx € dom(f)

V), < L.
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Analysis of GD for L-Lipschitz

Proof cont. Since

* 1 * (|2 %112 “Lz
Fle) = F) < o (llxe =13 = lxa =27 [3) + 55,

taking the telescopic sum we have

1 4 % 1 %12 112 DéLz
= Y f) = F(x) < szl = 2B = e — 27 [B) + 5
f=1
< R’ + aL? = € by choosing appropriately a, T
= 50T 5 y g approp y &, L.

The claim follows by convexity since % Zle flxy) > f (% Zf:l f (ﬂﬁt))

(Jensen’s inequality).
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Analysis of GD for L-smooth

Theorem (Gradient Descent). Let f : R? — IR be differentiable, convex
(want to minimize) and L-smooth. Let R = ||xg — x*||,. It holds for T = ZR;L

flxria) — f(x7) <€,

with appropriately choosing & = 1.

Remarks
e Again speed of convergence is independent of dimension d.

* This result gives a rate of O (i), different choice of stepsize.

* The theorem implies convergence f(x7) = f(x™).
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Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth
functions.

Claim 1. Let f be a differentiable and L-smooth, then

Fly) — F() = VF) (v —2) < 2 x—yl3.
Proof. It holds that

Fy) — Flx) — V1) ( ] Vi +ta— ) (@ —y)dt — Vi) (@ —y)
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Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth
functions.

Claim 1. Let f be a differentiable and L-smooth, then

Fly) — F() = VF) (v —2) < 2 x—yl3.
Proof. It holds that

Fy) — Flx) — V1) ( / Vi(y i —y) (@ —y)dt — Vi) (@ —y)

T

:(/ ny+t(x—y))dt—vf(y)) (@ - )
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Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth
functions.

Claim 1. Let f be a differentiable and L-smooth, then

Fly) — F() = VF) (v —2) < 2 x—yl3.
Proof. It holds that

Fy) — Flx) — V1) ( / Vi(y i —y) (@ —y)dt — Vi) (@ —y)

T

:(/0 Vily+t(x— ))dt—Vf(y)) (z —y)
— (fol{Vf(y+t(:v—y)) - Vf(y)}dlt)T (z —y)
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Analysis of GD for L-smooth

Before showing the proof, we show some important claims for L-smooth
functions.

Claim 1. Let f be a differentiable and L-smooth, then
- L
F) = f(x) = V@) Ty —x) < 5 [lx—yl3.
Proof. It holds that

Fy) — Flx) — V1) ( / Vi(y i —y) (@ —y)dt — Vi) (@ —y)

T

:(/ ny+t(a:—y))dt—vf(y)) (2 - )
— (/Ol{v,f(ert(a? —y)) — VJ"’(y)}dt)T (z —y)

using L-smoothness < Lfol tdt |x —yll5 = 5 lx —yl)5.
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Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

fx®) = fx) < flx = %Vf(X)) —f(x) < =57 IIVf(x)Hz

Proof. Set z = x — £V f(x). First inequality is trivial (definition of minizer).

f(z) ~ f(x) < V()T (z —2) + 5 ||z — x| using Claim 1,
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Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

F() = F(x) < flx = V() F(x) < 5 [ VFIE

Proof. Set z = x — %V f(x). First inequality is trivial (definition of minizer).

f(z) ~ f(x) < V()T (z —2) + 5 ||z — x| using Claim 1,

= IV TV () + £ 4 V)2,
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Analysis of GD for L-smooth

Claim 2. Let f be a differentiable, convex and L-smooth, then

F() = F(x) < flx = V() F(x) < 5 [ VFIE

Proof. Set z = x — %V f(x). First inequality is trivial (definition of minizer).

f(z) = f(x) < VF(x)T(z—x) + & |z — x|} using Claim 1,
= —IVF()TV() + 5L (IVF@)3,
= & [VF(x)]3.
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Analysis of GD for L-smooth

Proof of Theorem. Assume ||x; — x*||, is decreasing in ¢ (Exercise 4 to prove).

Using Claim 2,
1
fxean) = fx) < =z V()3
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Analysis of GD for L-smooth

Proof of Theorem. Assume ||x; — x*||, is decreasing in ¢ (Exercise 4 to prove).

Using Claim 2,
1
fxean) = fx) < =z V()3

From convexity we get,

flxe) = F(x*) S Vf(xe) " (xr — x*) <[V F(xe) |l ||xe — x*||, (C-S inequality
< |IVf(xt)ll5 l[xo — x7[|, (Assumption).
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Analysis of GD for L-smooth

Proof of Theorem. Assume ||x; — x*||, is decreasing in ¢ (Exercise 4 to prove).

Using Claim 2,
1
fxean) = fx) < =z V()3

From convexity we get,

flxe) = f(x*) S Vf(xr) " (= x*) < |V F(x)]l5 |22 — x|, (C-S inequality

< |IVf(xt)]5 [|[xo — x*||, (Assumption).
Combining the two

x;) — x* 2
Florin) = Fx) = (Flo) — fax)) < —5p LI BN

Setting 6; = f(xy) — f(x*), we get 6pp1 < 0 — 5757
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Analysis of GD for L-smooth

Proof of Theorem. Assume ||x; — x*||, is decreasing in ¢ (Exercise 4 to prove).

Using Claim 2,
1
fxean) = fx) < =z V()3

t—1

QED b-

x;) — x* 2
Florin) = Fx) = (Flo) — fax)) < —5p LI BN

Easy to show (skip details) §; < 2L ty).

Combining the two

Setting 6; = f(xy) — f(x*), we get 6pp1 < 0 — 5757
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = 2k 1n (£
[xr —x%l, <€,

with appropriately choosing « = 1.
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = % In (%)

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*[15 = ||xr—1 = $VF(xr) — x| =

Optimization for Machine Learning



Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — x| =

= |lxro1 —x* 3+ & IV (er—1) |5 — 2V F(xro1) T (xrq — %)
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — x| =

%112 2 *
= |lxr—1 — x*||5+ 75 IV f(xr—1) |3 =21V f(xr—1) T (x7—1 — x¥)
From Exercise 2 and then Claim 2 we get
FVf(rr—1) " (x* —xr-1) < F(f(x*) = fxr—1)) — [ 1" — x7_1]f3.

2 2
< — 5 [IVf(xr_)la — 7 llx* — xra]l3.
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = 2k 1n (£

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — x| =

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore |x7 — x*||3 < (1 — ) ||xr_1 — x*||5.

Optimization for Machine Learning



Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : RY — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x™||,.
It holds for T = 2k 1n (£

lxr —x7[|, <€,

with appropriately choosing « = 1.

Proof of Theorem. It holds that
2

2
lxr = x*1I3 = ||xr1 — £V (er 1) — x| =

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore ||x7 — x*||5 < (1 — ) ||xr_1 — x*||5.

T
Thus |x7 — x*||5 < (1 — %)TR2 < e TR
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Analysis of GD for L-smooth, u-convex

Theorem (Gradient Descent). Let f : R — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||xg — x*||,.

It holds for T = % In (%)
lxr —x7[|, <€,

with appropriately choosing « = 1.

P Remark (last iterate convergence!): x; — x*

2
lxr = %4113 = |[xr-1 = $ V(7)) = x°

2

= [lxr—1 — x*[3 + 2 | VF(xr—1) |3 — 22V f(xr—1) T (x7—1 — x¥)

Therefore ||x7 — x*||5 < (1 — ) ||xr_1 — x*||5.

T
Thus ||lxr — x* |2 < (1— £)' R2 < e~ TR2
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Projected Gradient Descent (GD)

(for differentiable functions)

Definition (Projected Gradient Descent). Let f : R? — R be differentiable
(want to minimize) in some compact convex set X. The algorithm below is called
projected gradient descent

Xkp1 = Ha(xp — aV f(xg)).

Remarks
* The projection might not be efficient (is also an optimization problem)!!
* The minimizer x* does not necessarily satisfy Vf(x*) = 0.

Question: When the last remark can be true?
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Analysis of Projected GD for L-Lipschitz

Theorem (Projected Gradient Descent). Let f : R? — R be differentiable,
convex (want to minimize in some compact set X) and L-Lipschitz. Let
R = ||x1 — x™*||,, the distance between the initial point xy and minimizer x*.

It holds for T = R;LZ

with appropriately choosing & = .

Remark
* Same guarantees as in the unconstrained case.
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
1

— E(xt — ) ' (x; — x*) definition of GD,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,
1

= - (xt — ) ' (x4 — x*) definition of GD,

1

= o (IIxe = %73+ % = ysl3 = 1y — "[13) law of Cosines,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

= —(xy —y1) " (xy — x*) definition of GD,

K
1

T
_1
2

(
(

xp —x°

x —x*

2

5 T

2
2

Xt — ytH% — ||y — x*H%) law of Cosines,

% (4
v —x"[3) +5 [ VF(xe)[3 Def. of v,
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Analysis of Projected GD for L-Lipschitz

Proof. Set y; := xy — aV f(x;). It holds that

fxs) = f(x*) < Vf(x) " (x¢ — x*) FOC for convexity,

1

= (%

I
1
20c

1
2
<1
20¢

(
(
(

xp —x°

Xt — X

x 12
2

2

2‘|_x

e = 15 = llye = *"[13) +

_ yt)T(xt — x*) definition of GD,

— ytHi — ||y — x*H%) law of Cosines,

. x
v —x°[3) + 5 V£ (x|} Def. of ys,

ocL2

Recall. Suppose f(x) is L-Lipschitz continous.

Then Vx € dom(f)

V), < L.
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Analysis of Projected GD for L-Lipschitz

Claim. It is true that

Iy (y) —x) ' (Ix(y) —y) < 0.

Proof. By picture.

Corollary. It is true that (Law of Cosines)

ly — x|I3 > 1T (y) — yl5 + T (y) — x|3
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Analysis of Projected GD for L-Lipschitz

2 2 2
Therefore ||y; — x*||5 > ||xtr1 — y||5 + || xe41 — XF|5

2
> ||xp41 — X*Hz

Proof. By picture.

y — Hx(y)|
AN Corollary. It is true that (Law of Cosines)

ly — x|I3 > 1T (y) — yl5 + T (y) — x|3
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Analysis of Projected GD for L-Lipschitz

Proof cont. Since Same as in classic GD!

* 1 * (|2 %112 “Lz
Fle) = F) < o (llxe =13 = lxa =27 [3) + 55,

taking the telescopic sum we have

1 4 % 1 %12 112 DéLz
= Y f) = F(x) < szl = 2B = e — 27 [B) + 5
f=1
< R’ + aL? = € by choosing appropriately a, T
= 50T 5 y g approp y &, L.

The claim follows by convexity since % Zle flxy) > f (% Zf:l f (xt))

(Jensen’s inequality).
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Conclusion

* |ntroduction to Convex Optimization
— Easy to minimize (generally is NP-hard).

2
— GD has rate of convergence O ( ) for L-Lipschitz.
— GD has rate of convergence O (E) for L-smooth.

— GD has rate of convergence O (u In E) for L-smooth, u-convex.
— Same is true for Projected GD (similar analysis) for constrained
optimization.

 Next week we will talk about sub-gradients (non-
differentiable functions) and Stochastic Gradient Descent
(SGD).
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