Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas

Homework

Question 1. Show that a twice differentiable function f(x) is convex if and only if the domain dom(f) is a convex set and $\forall x \in dom(f)$

 $\nabla^2 f(x) \succeq 0$ i.e., the Hessian is positive semi-definite.

Question 2. Suppose f(x) is differentiable and α -strongly convex. $\forall x, y \in \text{dom}(f)$ show that

$$f(y) - f(x) \ge \nabla f(x)^{\top} (y - x) + \frac{\alpha}{2} \|y - x\|_2^2.$$

Question 3. Suppose f(x) is *L*-Lipschitz continuous and $\partial f(x) \neq \emptyset$. Show that $\forall x \in \text{dom}(f)$ it holds

$$||g_x||_2 \leq L$$
 where $g_x \in \partial f(x)$.

Question 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a *differentiable*, convex and *L*-smooth. Let x^* be a minimizer of f and set $x_{t+1} = x_t - \frac{1}{L}\nabla f(x_t)$ (aka GD) with x_0 some initial condition. Show that $||x_t - x^*||$ is decreasing in t that is

$$||x_{t+1} - x^*|| \le ||x_t - x^*||$$
 for all $t \ge 0$.

Question 5. Let $f(x) := \mathbb{E}_{z \sim \mathcal{N}(\mu, 1)} \left[-\log \left(\frac{1}{2\sqrt{2\pi}} e^{(z-x)^2/2} + \frac{1}{2\sqrt{2\pi}} e^{(z+x)^2/2} \right) \right]$ where $\mu \neq 0$ and $\mathcal{N}(\mu, 1)$ denotes the Gaussian with mean μ and variance 1. Show that f(x) is not convex.

Question 6. Assume A is a $n \times n$ matrix with entries in [-1,1]. Moreover, assume that we run MWUA for the zero sum game with payoff matrix A for T iterations, starting from uniform distribution for both players. Let $\tilde{x} = \frac{1}{T} \sum_{t} p_x^t$ and $\tilde{y} = \frac{1}{T} \sum_{t} p_y^t$. For $T = \Theta\left(\frac{\log n}{\epsilon^2}\right)$ show that (\tilde{x}, \tilde{y}) is an ϵ -approximate NE that is

$$\tilde{x}^{\top}A\tilde{y} \leq x'^{\top}A\tilde{y} + \epsilon$$
 for all $x' \in \Delta_n$ and $\tilde{x}^{\top}A\tilde{y} \geq \tilde{x}^{\top}Ay' - \epsilon$ for all $y' \in \Delta_n^{-1}$.

Question 7. Let $f_k : \Delta_n \to \mathbb{R}$ be such that $f_k(x) = x^{\top} c_k$ (linear function). Moreover, let $R(x) := \sum_{i:x_i>0} x_i \log x_i$ (negative entropy which is strongly convex). Show that

$$x_t = \operatorname{argmin}_{x \in \Delta_n} \{ \epsilon \cdot \sum_{k=0}^{t-1} f_k(x) + R(x) \}$$

is the same dynamics (algorithm) as MWUA.

 $^{^{1}\}Delta_{n}$ denotes the simplex of size n.

Question 8. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a twice differentiable, convex function that is locally α -strongly convex around x, in the sense that $f(y) \ge f(x) + (y - x)^{\top} \nabla f(x) + \frac{\alpha}{2} ||y - x||_2^2$ holds for all vectors y in the ball $\mathbb{B}_2 = \{y : ||y - x||_2 \le \rho\}$. Show that

$$(y-x)^{\top} (\nabla f(y) - \nabla f(x)) \ge \rho \alpha ||y-x||_2$$
 for all $y \in \mathbb{R}^n \setminus \mathbb{B}_2$.

Due 30th April (23:59pm) on edimension.