
Optimization for Machine Learning 50.579

Instructor: Ioannis Panageas Scribed by: ZHAO Yunqing(1004964) ; GONG Jia(1005044)

Lecture 7. Introduction to Min-max Optimization.

1 Introduction to GANs

The min-max ideas can be stemmed from zero-sum game, among which the most popular represen-

tative series are GANs(Generative Adversarial Nets)[2] In this week, we study the construction of

GAN, as well as its core idea with mathematical proof. Generally, we also care about the min-max

optimization and related analysis involved in previous lecture.

1.1 Definition

Generative Adversarial Nets is a generative model via adversarial training process, in which we

can optimize two nets simultaneously: a generative models G with parameters θ that captures and

simulates the data distribution; a discriminative models D with parameters w that estimates the

probability of a sample from ground true distribution or from the discriminative model.

Precisely, one would like to solve the problem with objective function

min
θ

max
w

Ex∼pdata [logDw(x)] + Ez∼pnoise [log (1−Dw(Gθ(z)))] (1.1)

where pdata is the real data distribution, and pnoise is the noise distribution of Gaussian, which will

be sent to generator G to create the fake sample. Maximizing D means D is trying to maximize

the probability to assign correct label to both kinds of data, i.e., true label for sample from real

data distribution, and false label for sample from generated data distribution.

One can also write the objective function in a simple form

min
θ

max
w

Ex∼Q[Dw(x)]− Ez∼F [Dw(Gθ(z))] (1.2)

where the Gθ is the generator with parameters θ and Dw with parameters w is the discriminator.

Q is the data distribution and F say Gaussian noise.

1.2 Optimal Discriminator of GAN

The final destination of GAN is to obtain a powerful generator Gθ that can produce the sample

almost the same as the ground truth, fooling a good discriminator to remain unclear with true and

fake samples.

In this case, we firstly explore the optimal discriminator as a prior condition for clarity.

1



Lemma 1.1 (Optimality) For a fixed generator G, the optimal discriminator D has the density

Dw∗ =
pdata(x)

pdata(x) + pG(x)
(1.3)

where pG(x) is the implicit distribution of generated data from Gaussian noise, i.e., x = Gθ(z), as

has been mentioned before, z is sampled from a Gaussian noise distribution.

Proof: For a fixed generator G, D is trying to maximize the following objective:

J = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))] (1.4)

=

∫
x
pdata(x) logD(x)dx+

∫
z
pnoise(z) log(1−D(G(z)))dz (1.5)

= J1 + J2 (1.6)

Claim 1.2 For J2, we can also re-write it as∫
x
pG(x) log(1−D(x))dx (1.7)

To prove the Claim, generally we have two methods. For rigorous representation, we express both

of them. First, we may gain the result by setting x = G(z).

Proof of [:Claim 1.2, method 1]

We have a noise distribution of z

z ∼ pnoise(z) (1.8)

with x = G(z) and assuming that G(z) is an inversible function then z = G−1(x). Therefore

dz = (G−1)
′
(x)dx (1.9)

and

pG(x) =

[∫ G−1(x)

−∞
pnoise(t)dt

]′
(1.10)

= pnoise(G
−1(x))(G−1)

′
(x) (1.11)

Hence, we get the transformed result of J2:

J2 =

∫
z
pnoise(z) log(1−D(G(z)))dz (1.12)

=

∫
x
pnoise(G

−1(x)) log(1−D(x))(G−1)
′
(x)dx (1.13)

=

∫
x
pG(x) log(1−D(x))dx (1.14)

2



However, it is a very special case where x = G(z) is an inversible function, since G(z) is often a

non-parametric model(with no assumption of the data distribution and always a neural network in

GANs) and we cannot sure its inversibility. Here we provide another method to prove the trans-

formation of Claim 1.2.

Proof of [:Claim 1.2, method 2]

First, we define a deterministic mappingG(·) : Z → X because of the fixedG. Then the transformed

result of J2 can be:∫
x
pG(x) log(1−D(x))dx =

∫
x

[∫
z
pG(x, z) log(1−D(x))dz

]
dx (1.15)

=

∫
x

[∫
z
pz(z)pG(x|z)dz

]
log(1−D(x))dx (1.16)

Since Z → X is a deterministic mapping with generator G, thus

pG(x|z) = δ(x−G(z)) (1.17)

where δ(·) is a Dirac delta function. Then cont from Eq.1.16∫
x

[∫
z
pz(z)pG(x|z)dz

]
log(1−D(x))dx =

∫
x

[∫
z
pz(z)δ(x−G(z))dz

]
log(1−D(x))dx (1.18)

=

∫
z

[∫
x

log(1−D(x)) · δ(x−G(z))dx

]
pz(z)dz (1.19)

=

∫
z

[log(1−D(x)) ∗ δ(x−G(z))] pz(z)dz (1.20)

=

∫
z

log(1−D(G(z)))pz(z)dz (1.21)

= J2 (1.22)

where “ ∗ ” denotes the convolution operation. This is a more rigorous proof of Claim 1.2.

Hence, the whole objective function can be

J = J1 + J2 (1.23)

=

∫
x
pdata(x) logD(x)dx+

∫
x
pG(x) log(1−D(x))dx (1.24)

=

∫
x
pdata(x) logD(x) + pG(x) log(1−D(x))dx (1.25)

which is a form like

f(y) = a log y + b log(1− y) (1.26)

Set f ′(y) = 0 we get

f ′(y) =
a

y
− b

1− y
= 0 (1.27)

3



holds for y = a
a+b and f(y) achieves its maximum. Therefore, the optimal discriminator is

Dw∗ =
pdata(x)

pdata(x) + pG(x)
(1.28)

Given the optimal discriminator, we aim to train the generator model to achieve the global solu-

tion, in which case the discriminator cannot make correct classification anymore like mentioned

before. The objective function then boils down to minimizing a cost function with variable G,

parameterized by θ:

C(G) : = Ex∼pdata [logDw∗ ] + Ex∼pG [log(1−Dw∗)] (1.29)

= Ex∼pdata

[
log

pdata
pdata + pG

]
+ Ex∼pG

[
log

pG
pdata + pG

]
(1.30)

1.3 Global Solution of C(G)

Given the cost function C(G) under condition of optimal discriminator Dw∗ , we aim to minimize

this objective function to reach a global solution, i.e., a powerful generator Gθ.

Firstly let’s recap the Kullback–Leibler Divergence[5], which will be used for the later proof. The

KL-divergence, also called relative entropy, is a measure of how one probability distribution is

different from a second, reference probability distribution. The larger value of KL-divergence, the

bigger difference between two distributions. The KL-divergence can be expressed as

KL(p(x)‖q(x)) = Ex∼p
[
log

p(x)

q(x)

]
(1.31)

which is an asymmetrical measurement, that KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)), as a remedy, this

can also be replaced by Jensen–Shannon divergence[4]

JS(p(x)‖q(x)) =
1

2
KL

(
p(x)‖p(x) + q(x)

2

)
+

1

2
KL

(
q(x)‖p(x) + q(x)

2

)
(1.32)

JS-divergence is apparently a symmetric formula.

Claim 1.3 An important property of KL-divergence that it is non-negative, i.e.,

KL(p(x)‖q(x)) ≥ 0 (1.33)

Proof: Assume that f is a convex function, from Jensen’s inequality we have

E[f(x)] ≥ f [E(x)] (1.34)

Since f(x) = − log x is a convex function, set T (x) = q(x)
p(x) we have

Ex [− log(T (x))] ≥ − logEx [T (x)] (1.35)

4



Substituting in the f(x) with T (x)

KL(p(x)‖q(x)) = Ex∼p(x)
[
− log

(
q(x)

p(x)

)]
(1.36)

≥ − logEx∼p(x)
(
q(x)

p(x)

)
(1.37)

= − log

∫
q(x)dx (1.38)

= − log(1) (1.39)

= 0 (1.40)

Then we can get closer to the global solution of generator G, given the optimal discriminator Dw∗

obtained before.

Theorem 1.4 (Global Solution) The global minimum of C(G) is achieved if and only if

pG = pdata (1.41)

which means the distribution of generated data from G is equal to that of the true data.

Proof:

Recall that C(G) 1.30 equals to

C(G) = Ex∼pdata

[
log

pdata
pdata + pG

]
+ Ex∼pG

[
log

pG
pdata + pG

]
(1.42)

= Ex∼pdata

[
log

pdata
2

pdata+pG
2

]
+ Ex∼pG

[
log

pG
2

pdata+pG
2

]
(1.43)

= − log 4 + Ex∼pdata

[
log

pdata
pdata+pG

2

]
+ Ex∼pG

[
log

pG
pdata+pG

2

]
(1.44)

= − log 4 +KL

(
pdata‖

pdata + pG
2

)
+KL

(
pG‖

pdata + pG
2

)
(1.45)

= − log 4 + 2JS(pdata‖pG) (1.46)

Therefore, when pG = pdata, the minimum of C(G), i.e., − log 4, is achieved.

GAN is currently a very eye-catching research topic and can be applied in various work, such as

image super-resolution, neural style or image in-painting. It is also a representative for min-max

game in machine learning algorithm.

For better understanding of the training mechanism of GANs, we would like to introduce the figure

from [2] as follows:

5



Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative

distribution (D, blue, dashed line) so that it discriminates between samples from the data generating

distribution (black, dotted line) pdata from those of the generative distribution pG (green, solid line).

The lower horizontal line is the noise domain from which z is sampled, in this case uniformly. The

horizontal line above is part of the domain of x. The upward arrows show how the mapping

x = G(z) imposes the non-uniform distribution pG on transformed samples. G contracts in regions

of high density and expands in regions of low density of pG.

The above four sub-figure can be interpreted as follows: (a) Consider an adversarial pair near

convergence: pG is similar to pdata and D is a partially accurate classifier. (b) In the inner loop of

the algorithm D is trained to discriminate samples from data, converging to D∗(x) = pdata(x)
pdata(x)+pG(x) .

(c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely

to be classified as true data. (d) After several steps of training, if G and D have enough capacity,

they will reach a point at which both cannot improve because pG = pdata. The discriminator is

unable to differentiate between the two distributions, i.e., D(x) = 1
2 .

2 Min-Max Optimization

The research and exploration of GAN motivate the study of min-max optimization, which is in-

trinsically harder than minimization. Min-max game optimization can be expressed by

Definition 2.1 (Min-Max Optimization) For some continuous function f we want to solve

min
x∈X

max
y∈Y

f(x, y) (2.1)

Remarks

• Domains are typically compact.

• In general the above problem may not have a solution or it is hard to train the models.

• There are guarantees when domains are compact and f is convex-concave, mentioned later.

Claim 2.1 (Min-Max Inequality) For min-max optimization, it is always true(no-necessary for

f being convex-concave) that

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y) (2.2)

6



Proof: Define

g(z) , inf
w∈W

f(z, w) (2.3)

easy to find

∀w,∀z, g(z) ≤ f(z, w) (2.4)

⇒ ∀w, sup
z
g(z) ≤ sup

z
f(z, w) (2.5)

⇒ sup
z
g(z) ≤ inf

w
sup
z
f(z, w) (2.6)

substituting in g(z) = infw f(z, w) we get

sup
z

inf
w
f(z, w) ≤ inf

w
sup
z
f(z, w) (2.7)

Theorem 2.2 (Min-Max by John von Neumann) Let X ⊂ Rn and Y ⊂ Rn be compact con-

vex sets. If f is a continuous function that is convex-concave it holds

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y) (2.8)

Remarks

• Many applications, especially in Game Theory.

• If f = xTAy, and the domains are ∇n, ∇m, it captures classic zero sum games.

• f(x, y) is the value of the game.

Proof of [:Theorem 2.2]

Firstly Let’s recall the definition of Online Gradient Descent and use it as an example for the proof.

Definition 2.2 (Online Gradient Descent) . Let f : Rn → R be convex function, differentiable

and L− lipschitz in some compact convex set X of diameter D. Online GD is defined:

Algorithm 1 Online Gradient Descent

Initialize at some x0.

For t:= 1 to T do

• Choose xt and observe lt(xt)

• yt = xt − αt∇lt(xt)

• xt+1 = ΠX (yt)

Regret: 1
T

(∑T
t=1 lt(xt)−minx

∑T
t=1 lt(xt)

)

7



The goal is to minimize the regret with error ε>0 such that

1

T

(
T∑
t=1

lt(xt)−min
x

T∑
t=1

lt(x)

)
<ε (2.9)

which can then be called “No-regret”.

In this proof, we use “No-regret” learning for both “players”, i.e., function w.r.t. both variables.

Let x1, . . . , xT and y1, . . . , yT be the parameters that iterates as advised by some no-regret algo-

rithm. Define x̂ =
∑T

i=1 xi and ŷ = 1
T

∑T
i=1 yi and T = Θ

(
1
ε2

)
. Since we want to minimize the

objective function w.r.t. variable x, from “No-regret” property we choose any x and get that

1

T

∑
t

f(xt, yt) ≤
1

T

∑
t

f(x, yt) + ε (2.10)

≤ f(x, ŷ) + ε by concavity (2.11)

Similarly, we want to maximize the objective function w.r.t. variable y, from “No-regret” property

we choose any y and get that

1

T

∑
t

f(xt, yt) ≥
1

T

∑
t

f(xt, y)− ε (2.12)

≥ f(x̂, y)− ε by convexity (2.13)

Combine the inequalities 2.11 and 2.13 we have

f(x̂, y)− 2ε ≤ f(x, ŷ) (2.14)

Conclude for all x and y we have

max
y
f(x̂, y)− 2ε ≤ min

x
f(x, ŷ) (2.15)

Observe the right-hand side

max
y

min
x
f(x, y) ≥ min

x
f(x, ŷ) (2.16)

≥ max
y
f(x̂, y)− 2ε (2.17)

≥ min
x

max
y
f(x, y)− 2ε (2.18)

then the theorem can be proved with ε→ 0.

3 Last Iterate Convergence

Generally, the convex-concave settings with compact domains of function f are easy. However it is

tough to optimize with GANs, in which

8



• Functions are not necessarily convex-concave

• Time averaging does not help, and Jensen’s inequality is not applicable

Therefore we fail to care about the time-averaging case, this motivates us to notice last iterate

convergence[3]. We focus on

min
x∈X

max
y∈Y

xTAy (3.1)

for the rest part.

3.1 Gradient Descent/Ascent(GDA)

We consider gradient descent for minimizing the loss function w.r.t. x and maximizing that with

gradient ascent w.r.t. y, expressed as

xt+1 = xt − η∇xf(xt, yt) (3.2)

yt+1 = yt + η∇yf(xt, yt) (3.3)

With simplest case where f(x, y) = xy, and η is the step size. In this case GDA boils down to

xt+1 = xt − ηyt (3.4)

yt+1 = yt + ηxt (3.5)

Since when we consider the evolution trend of the x and y, we may imagine their changing of

distance from the origin, i.e. (0, 0). To better illustrate the convergence situation, we substitute

the update formulas above in the example below.

Claim 3.1 (Divergence) It holds that x2t + y2t is increasing in t.

Proof: From GDA algorithm we have

xt+1 = xt − ηyt (3.6)

yt+1 = yt + ηxt (3.7)

then

x2t+1 + y2t+1 = (η2 + 1)(x2t + y2t )>x
2
t + y2t (3.8)

which proves the divergence in this situation.

3.2 Multiplicative Weights Update Algorithm(MWUA)

The similar result can be obtained via MWUA:

xt+1
i =

xtie
−η(Ayt)i

Zx
(3.9)

yt+1
j =

ytje
η(A>xt)j

Zy
(3.10)

with a theorem pointing its divergence:

9



Theorem 3.2 (Divergence) Assume there exists a unique fully mixed Nash (x∗, y∗) equilibrium

(full support). It holds that the KL-divergence between player strategies the fully mixed Nash goes

to infinity, i.e.,

lim
t
KL(x∗‖xt) =∞ (3.11)

lim
t
KL(y∗‖yt) =∞ (3.12)

To solve this issue, we may consider some other algorithms and ideas to restrict the divergence.

Next, we would like to consider more about min-max optimization and Optimism Gradient Descent !

3.3 Negative Momentum(Optimism)

Previously we discussed about the last iterate convergence but found that Gradient Descent As-

cent(GDA) diverges even for the simplest form x>Ay. In this part, we start from the continuous

GDA for the bi-linear form, then the objective function should be

min
x∈Rn

max
y∈Rm

x>Ay (3.13)

Firstly let’s recall the GDA formula of bilinear system:

xt+1 = xt − η∇xf(xt, yt) (3.14)

yt+1 = yt + η∇yf(xt, yt) (3.15)

Consider the continuous GDA that is the system of odes:

dx

dt
= −ηAy (3.16)

dy

dt
= ηA>x (3.17)

then we also consider the cycles.

Lemma 3.3 (Cycles) It holds that ‖x‖22 + ‖y‖22 is constant w.r.t t.

Proof: Observe that

dx2i
dt

= 2xi
dxi
dt

= −2ηxi(Ay)i (3.18)

dy2j
dt

= 2yj
dyj
dt

= 2ηyj(A
>x)j (3.19)

Hence, we get

d

dt
{‖x‖22 + ‖y‖22} =

∑
i

∂

∂t
x2i +

∑
j

∂

∂t
y2j (3.20)

= −2η
∑
i

xi(Ay)i + 2η
∑
j

yj(A
>x)j (3.21)

= 0 (3.22)

10



therefore it remains constant and fails to convergence.

We here to use optimism(or negative momentum since we step back) to try to fix this behavior.

The update function can be expressed like this:

xt+1 = xt − 2η∇xf(xt, yt) + η∇xf(xt−1, yt−1) (3.23)

yt+1 = yt + 2η∇yf(xt, yt)− η∇yf(xt−1, yt−1) (3.24)

Intuitively, the optimism gradient descent can be interpreted as follows:

Figure 2: Interpretation of Optimism Gradient Descent

As we have showed before, if we do not constrain here, the objective function may remain constant

or either divergence, as the purple circle shows. Then we use optimism to step back, trying to

force the objective to go inside as the green dashed line. The orange small square is the theoretical

optimal destination.

Formally, we can describe the theorem of OGDA(Optimism Gradient Descent Ascent) as follows.

Theorem 3.4 (Convergence) Consider the bilinear game x>Ay where A is full rank. Optimistic

GDA converges point-wise and reaches an ε neighborhood in

T := Θ

(
λmax(AA>)

λmin(AA>)
log

1

ε

)
(3.25)

by choosing learning rate η = 1

4
√
λmax(AA>)

.

An intuitive demonstration of proof can be showed as follows.

Proof: We can treat the above optimism gradient descent procedure as a linear system, i.e.:
xt+1

yt+1

xt
yt

 =


I −2ηA 0 ηA

2ηA> I −ηA> 0

I 0 0 0

0 I 0 0



xt
yt
xt−1
yt−1

 (3.26)

11



by setting

Mt+1 =


xt+1

yt+1

xt
yt

 (3.27)

and

Q =


I −2ηA 0 ηA

2ηA> I −ηA> 0

I 0 0 0

0 I 0 0

 (3.28)

we get the simplified form

Mt+1 = QMt (3.29)

then

Mt+n = QnMt (3.30)

Obviously that coefficient matrix Q is full rank like that of A. From matrix decomposition we have

Q = SΛS−1 (3.31)

where matrix S is composed of eigenvectors placed by column of Q, and Λ is a diagonal matrix

with eigenvalues λ1, λ2, . . . , λn. Therefore

Qn = SΛnS−1 (3.32)

since S is a inversible matrix due to full rank of Q. The state equation can be described as

Mt+n = QnMt (3.33)

Then we can propose the following lemma:

Lemma 3.5 (Eigenvalues) The coefficient matrix Q has eigenvalues with magnitude being all

less than 1 by appropriate choice of η, which has been proposed in Theorem 3.4.

With the above lemma we are sure that the state(objective function) M is going to convergence.

4 Min-max in bilinear constrained case

Consider the problem

min
x∈∇n

max
y∈∇m

x>Ay (4.1)

Let’s do Optimistic Multiplicative Weights Update, i.e.,

xt+1
i = xti

1− 2η(Ayt)i + η(Ayt−1)i∑
j x

t
j(1− 2η(Ayt)j + η(Ayt−1)j)

(4.2)

yt+1
i = yti

1 + 2η(A>xt)i − η(A>xt−1)i∑
j y

t
j(1 + 2η(A>xt)j − η(A>xt−1)j)

(4.3)

We can then have the following theorem.

12



Theorem 4.1 (Convergence) Let A be the payoff matrix of a zero sum game and the game has

a unique Nash equilibrium. It holds that fot η sufficiently small(depends on n, m, A, η can be

exponentially small in n, m), starting from uniform distribution limt→∞(xt, yt) = (x∗, y∗) under

OMWU dynamics.

5 Min-max in general settings

In this case, the above mentioned Min-max theorem is not applicable. We can instead solve the

problem by relaxing the solution concept:

Definition 5.1 (Local Nash) A critical point (x∗, y∗) is a local Nash if there exists a neighbor-

hood U around (x∗, y∗) so that for all (x, y) ∈ U we have that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) (5.1)

However, it is natural to ask: Does there always exist a local Nash? The answer is no. The following

theorem points out its nature:

Theorem 5.1 (Local Convergence) Under mild assumptions on f(x, y) and step-size η we have

Local Nash ⊂ GDA− stable ⊂ OGDA− stable (5.2)

Remarks

• This is a local result.

• The inclusion relationship can be strict.

The second term of remarks directs to the following lemma:

Lemma 5.2 (Inclusion strict) There are functions with critical points that are GDA-stable but

not local Nash [1]. An example is

f(x, y) = −1

8
x2 − 1

2
y2 +

6

10
xy (5.3)

Proof: Let

f(x, y) = −1

8
x2 − 1

2
y2 +

6

10
xy (5.4)

with α being the step size. The GDA update rule for this min-max game is:

xt+1 = xt − α
(
−1

4
xt +

6

10
yt

)
(5.5)

yt+1 = yt + α

(
−yt +

6

10
xt

)
(5.6)

Computing the Jacobian Matrix of above GDA rule at coordinate (0, 0)

JGDA =

[
1 + 1

4α − 6
10α

6
10α 1− α

]
(5.7)

13



Both eigenvalues of JGDA have magnitude less than 1 (for any 0<α< 1
L where L ≤ 1.34). Hence,

there exists a neighborhood U of (0, 0) so that for all (x0, y0) ∈ U we get that limt(xt, yt) = (0, 0)

for GDA update rules. However it is clear that (0, 0) is not a local min-max. See also the following

figure for a pictorial illustration of the conclusion.

Figure 3: Function f(x, y) = −1
8x

2 − 1
2y

2 + 6
10xy with α = 0.001

The arrows point towards the next step of the Gradient Descent/Ascent dynamics. We can see that

the system converges to (0, 0) point (GDA-stable), which is not a local min-max critical point(refer

to the above definition) .

14



References

[1] Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent

in min-max optimization. In Advances in Neural Information Processing Systems, pages 9236–

9246, 2018.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680, 2014.

[3] Qi Lei, Sai Ganesh Nagarajan, Ioannis Panageas, and Xiao Wang. Last iterate convergence

in no-regret learning: constrained min-max optimization for convex-concave landscapes. arXiv

preprint arXiv:2002.06768, 2020.

[4] Wikipedia. Definition of Jensen–Shannon divergence. https://en.wikipedia.org/wiki/

Jensen%E2%80%93Shannon_divergence, 2020.

[5] Wikipedia. Definition of Kullback–Leibler divergence. https://en.wikipedia.org/wiki/

Kullback%E2%80%93Leibler_divergence, 2020.

15

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

	1 Introduction to GANs
	1.1 Definition
	1.2 Optimal Discriminator of GAN
	1.3 Global Solution of C(G)

	2 Min-Max Optimization
	3 Last Iterate Convergence
	3.1 Gradient Descent/Ascent(GDA)
	3.2 Multiplicative Weights Update Algorithm(MWUA)
	3.3 Negative Momentum(Optimism)

	4 Min-max in bilinear constrained case
	5 Min-max in general settings

