L14 Introduction to Markets

CS 280 Algorithmic Game Theory Ioannis Panageas

Food Markets Stock Markets

Matching Markets

Intro to AGT

Driven by a rule: Supply meets demand!

Food Markets **Stock Markets**

Matching Markets

Intro to AGT

Definition (Market). A market consists of:

- A set $\mathcal B$ of n buyers/traders.
- A set G of m goods.
- Each buyer i has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_i denotes the amount of each good. W.l.o.g $b_i = 1$.
- u_{ij} denotes the utility derived by i on obtaining a unit amount of good of j.
- Each good *j* is associated with a price p_i .

Definition (Market). A market consists of:

- A set $\mathcal B$ of n buyers/traders.
- A set G of m goods.
- Each buyer i has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_i denotes the amount of each good. W.l.o.g $b_i = 1$.
- u_{ij} denotes the utility derived by *i* on obtaining a unit amount of good of *j*.
- Each good *j* is associated with a price p_i .

Definition (Fisher Market). A market so that the utilities are linear: Let x_{ij} be the amount of units buyer i gets of good j then

$$
u_i = \sum_{j \in \mathcal{G}} x_{ij} u_{ij}.
$$

Intro to AGT

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

$$
\max \sum_{j=1}^{m} x_{ij} u_{ij}
$$

Intro to AGT

Definition (Market clearance). A vector of price (x^*, p^*) is called **market equilibrium** if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

$$
\max \sum_{j=1}^{m} x_{ij} u_{ij}
$$
 Budget constraint.
s.t $\sum_{j=1}^{m} p_j x_{ij} \le 1$
 $x_i \ge 0$

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

Given an arbitrary vector of prices $p \geq 0$, from each buyer's i perspective:

Can we find (x, p) s.t all are satisfied simultaneously?

Consider the following **convex** program:

 $\max \sum_{j=1}^n \ln u_i$ s.t $u_i = \sum_{j=1}^m u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \le 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Consider the following **convex** program:

max $\sum_{j=1}^{n} \ln u_i$
s.t $u_i = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \le 1$ for all goods $j \in \mathcal{G}$,
 $x_{ij} \ge 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

• The domain above is compact hence there is an optimal solution x^* .

Consider the following **convex** program:

$$
\max \sum_{j=1}^{n} \ln u_i
$$

s.t $u_i = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,

$$
\sum_{i=1}^{n} x_{ij} \le 1
$$
 for all goods $j \in \mathcal{G}$,
 $x_{ij} \ge 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!

Consider the following **convex** program:

 $\max \sum_{j=1}^n \ln u_i$ s.t $u_i = \sum_{j=1}^m u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \le 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Consider the following **convex** program:

 $\max \sum_{j=1}^n \ln u_i$ s.t $u_i = \sum_{j=1}^m u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \le 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Is x^* an **equilibrium**? What are the prices?

 x^* satisfies the KKT conditions.

KKT are **first-order conditions** for **constrained** Optimization

x^* satisfies the KKT conditions.

KKT are **first-order conditions** for **constrained** Optimization

$$
L(x, p) = \sum_{j=1}^{n} \ln u_j - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)
$$

objective
$$
\underbrace{\qquad \qquad \text{construct for good } j}
$$

Remark: Langrangian involves objective and constraints!

x^* satisfies the KKT conditions.

KKT are **first-order conditions** for **constrained** Optimization

$$
L(x, p) = \underbrace{\sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1)}_{\text{objective}}
$$

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables. Primal feasibility: Dual feasibility: $p_i \geq 0$ for all $j \in \mathcal{G}$. $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

 x^* satisfies the KKT conditions.

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables. Primal feasibility: Dual feasibility: $x_{ij} \ge 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$. $p_i \ge 0$ for all $j \in \mathcal{G}$.

$$
\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j = 0 \text{ if } x_{ij} > 0.
$$
\n
$$
\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j \le 0 \text{ if } x_{ij} = 0.
$$
\n
$$
\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} = 0 \text{ if } p_j > 0.
$$
\nComplementary Slackness

\n
$$
\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} \ge 0 \text{ if } p_j = 0.
$$

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

min max $L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p)$ since it is convex – concave,

where $L(x, p) = \sum_{i=1}^{n} \ln u_i - \sum_{i=1}^{m} p_i (\sum_{i=1}^{n} x_{ij} - 1)$.

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

min max $L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p)$ since it is *convex – concave*,

where
$$
L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).
$$

Remark: Observe that dual variables p penalize if a constraint is violated.

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

min max $L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p)$ since it is *convex – concave*,

where
$$
L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).
$$

Remark: Observe that dual variables p penalize if a constraint is violated.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good j, there exists a buyer i with $u_{ij} > 0$ then:

- The set of equilibrium allocations is convex.
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)

By KKT we have there exists buyer i so that $u_{ij} > 0$. We conclude from KKT $p_j^* \geq \frac{u_{ij}}{\sum_{i'=1}^m u_{ij'} x_{ii'}^*} > 0.$

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices \implies

By complementary slackness we have $\sum_{i=1}^{n} x_{ij}^{*} = 1$.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Goods sold out

\n- 1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$. Positive prices
\n- 2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. **Goods sold** or $j \in \mathcal{G}$. $j \in \mathcal{G}$, $j \in \mathcal{G}$.
\n

Using KKT conditions for fixed buyer *i* we also have for $x_{ij}^* > 0$

$$
\frac{u_{ij}}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*
$$

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$. Goods sold out

Using KKT conditions for fixed buyer *i* we also have for $x_{ij}^* > 0$

$$
\frac{u_{ij}}{\sum_{j'=1}^m x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^m x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*
$$

Summing over all goods $j \in \mathcal{G}$ the above we have

$$
1 = \frac{\sum_{j=1}^{m} u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = \sum_{j=1}^{m} x_{ij}^* p_j^*
$$

Intro to AGT

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

\n- 1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$.
\n- 2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. **Goods sold out**
\n- 3) We showed that $\sum_{j=1}^m x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. **Buyers spent all their money**
\n

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

\n- 1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$.
\n- 2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. **Goods sold out**
\n- 3) We showed that $\sum_{j=1}^m x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. **Buyers spent all their money**
\n

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

\n- 1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$.
\n- 2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. **Goods sold out**
\n- 3) We showed that $\sum_{j=1}^m x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. **Buyers spent all their money**
\n

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

\n- 1) We showed that
$$
p_j^* > 0
$$
 for all $j \in \mathcal{G}$.
\n- 2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. **Goods sold out**
\n- 3) We showed that $\sum_{j=1}^m x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$. **Buyers spent all their money**
\n

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

By doing the transformation $q_j = \frac{1}{p_j}$ the prices should satisfy a linear system (by KKT conditions) with rational coefficients.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$
u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^\rho\right)^{\frac{1}{\rho}}, \text{ for } -\infty < \rho \le 1.
$$

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$
u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^\rho\right)^{\frac{1}{\rho}}, \text{ for } -\infty < \rho \le 1.
$$

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

$$
\rho = 1 \longrightarrow
$$
 Linear utility form

 $\rho \rightarrow -\infty$ Leontief utility form

 $\rho \rightarrow 0$ \longrightarrow Cobb-Douglas form

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Notation:

• $b_{ii}^{(t)}$ the bid of buyer *i* for good *j* at time *t*.

•
$$
p_j^{(t)} = \sum_{i \in \mathcal{B}} b_{ij}^{(t)}
$$
 price for good j.

• Allocation
$$
x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}
$$
.

- Utility of agent *i* from good *j* is $u_{ii}^{(t)} = x_{ii}^{(t)}w_{ij}$.
- Utility $u_i^{(t)} = \sum_{i \in \mathcal{G}} u_{ii}^{(t)}$. Bid $b_i^{(t)} = \sum_{i \in \mathcal{G}} b_{ii}^{(t)}$.

- $b_{ii}^{(t)}$ the bid of buyer *i* for good *j* at time *t*.
- $p_i^{(t)} = \sum_i b_{ii}^{(t)}$ price for good j.
- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_i^{(t)}}$.
- Utility of agent *i* from good *j* is $u_{ii}^{(t)} = x_{ii}^{(t)}w_{ij}$.
- Utility $u_i^{(t)} = \sum_{i \in G} u_{ii}^{(t)}$. Bid $b_i^{(t)} = \sum_{i \in G} b_{ii}^{(t)}$.

For each agent *i* and good *j* set

$$
b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}
$$

Intro to AGT

For each agent *i* and good *j* set

$$
b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}
$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

For each agent *i* and good *j* set

$$
b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}
$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

Remark:

- The convergence result holds for CES utilities with a different rate.
- Similar rate to Multiplicative Weights Method (not a coincidence).

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$
b_{ij}^* = x_{ij}^* \cdot p_j^*.
$$

The potential function will be (show it is decreasing)

$$
\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).
$$

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$
b_{ij}^* = x_{ij}^* \cdot p_j^*.
$$

The potential function will be (show it is decreasing)

$$
\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).
$$

Remark:

- KL divergence $KL(x||y) = \sum x_i \log \frac{x_i}{y_i}$ for distributions x, y .
- KL $(x||y) \ge 0$, pseudo-distance, symmetry not satisfied.