L14 Introduction to Markets

CS 280 Algorithmic Game Theory Ioannis Panageas

Food Markets

2/	NEW	YOR	с этоск	EXCHA	NGE	
1			POST 6			
14	Lice	Mor	4:02:35 nday, November	12, 2018	mm	
NADEZ, , 1809 . Véste-	-003 25,367,0 -194,0	- An	-	m		04,060,400 040,060,000 040,000,000 040,000,000
755.20	5 -5.07	SPMI	2,731.00	-48.00	VIX	20.17
97.57	0.66	SPX	2,726.21	-54.80	RUT	1,518,78
31.86	-0.03	SPZ	2,730.00	-48.90	XES	12.88
118.44	0.31	WTI	59.03	-1.16	RMZ	1,142.9
38.65 -0	56.15	BRNT	69.28	-0.90	XSC	65

Stock Markets

Matching Markets

Intro to AGT

Driven by a rule: Supply meets demand!

Food Markets

2	NEW	YOR	C STOCK	EXCHA	NGE	
1			POST 6			
10	Lico	Mor	4:02:35 nday, November	12, 2018	mm	
where, macre, VESE ca	-003 25,387.1 -194.0 12,543.0	-	-	m	NOL TRAN 10	04,060,400 660,680,680 135,000,682 665,1,-126,890
735.1	6 -5.07	SPMI	2,731.00	-48.00	VIX	20.17
\$7.57	0.66	SPX	2,726.21	-54.80	RUT	1,518,78
31.86	-0.03	SPZ	2,730.00	-48.90	XES	12.88
118.44	0.31	WTI	59.03	-1.16	RMZ	1,142.9
38.65 -	66.15	BRNT	69,28	-0.90	JZX (65

Stock Markets

Matching Markets

Intro to AGT

Definition (Market). *A market consists of:*

- A set B of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer *i* has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_j denotes the amount of each good. W.l.o.g $b_j = 1$.
- u_{ij} denotes the utility derived by *i* on obtaining a unit amount of good of *j*.
- Each good j is associated with a price p_j .

Definition (Market). *A market consists of:*

- A set B of n buyers/traders.
- A set \mathcal{G} of m goods.
- Each buyer *i* has e_i amount of \$. W.l.o.g assume $e_i = 1$.
- b_j denotes the amount of each good. W.l.o.g $b_j = 1$.
- u_{ij} denotes the utility derived by *i* on obtaining a unit amount of good of *j*.
- Each good j is associated with a price p_j .

Definition (Fisher Market). A market so that the utilities are linear: Let x_{ij} be the amount of units buyer i gets of good j then

$$u_i = \sum_{j \in \mathcal{G}} x_{ij} u_{ij}.$$

Intro to AGT

Definition (Market clearance). A vector of price (x^*, p^*) is called *market equilibrium* if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Definition (Market clearance). A vector of price (x^*, p^*) is called *market equilibrium* if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

$$\max \sum_{j=1}^m x_{ij} u_{ij}$$

Intro to AGT

Definition (Market clearance). A vector of price (x^*, p^*) is called *market equilibrium* if for given prices p^* , each buyer is assigned an optimal basket of goods relative the prices and buyer's budget and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices $p \ge 0$, from each buyer's i perspective:

$$\max \sum_{j=1}^{m} x_{ij} u_{ij}$$

s.t $\sum_{j=1}^{m} p_j x_{ij} \le 1$
 $x_i \ge 0$
Budget constraint.

Given an arbitrary vector of prices $p \ge 0$, from each buyer's *i* perspective:

Given an arbitrary vector of prices $p \ge 0$, from each buyer's *i* perspective:

Can we find (*x*, *p*) s.t all are satisfied simultaneously?

Consider the following **convex** program:

 $\max \sum_{j=1}^{n} \ln u_{i}$ s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \leq 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_i$$

s.t $u_i = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
 $\sum_{i=1}^{n} x_{ij} \leq 1$ for all goods $j \in \mathcal{G}$,
 $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

• The domain above is compact hence there is an optimal solution x^* .

Consider the following **convex** program:

$$\max \sum_{j=1}^{n} \ln u_{i}$$

s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$,
 $\sum_{i=1}^{n} x_{ij} \leq 1$ for all goods $j \in \mathcal{G}$,
 $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!

Consider the following **convex** program:

 $\max \sum_{j=1}^{n} \ln u_{i}$ s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \leq 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Consider the following **convex** program:

 $\max \sum_{j=1}^{n} \ln u_{i}$ s.t $u_{i} = \sum_{j=1}^{m} u_{ij} x_{ij}$ for all buyers $i \in \mathcal{B}$, $\sum_{i=1}^{n} x_{ij} \leq 1$ for all goods $j \in \mathcal{G}$, $x_{ij} \geq 0$ for all $i \in \mathcal{B}$, $j \in \mathcal{G}$.

Remark:

- The domain above is compact hence there is an optimal solution x^* .
- Note that there are no budget constraints!
- Maximizing a concave function is a convex program and can be solved in poly-time for affine constraints!

Is x^* an **equilibrium**? What are the **prices**?

 x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

$$L(x,p) = \underbrace{\sum_{j=1}^{n} \ln u_i}_{\text{objective}} - \underbrace{\sum_{j=1}^{m} p_j(\sum_{i=1}^{n} x_{ij} - 1)}_{\text{constraint for good } j}$$

Remark: Langrangian involves objective and constraints!

x^* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

$$L(x, p) = \underbrace{\sum_{j=1}^{n} \ln u_i}_{\text{objective}} - \underbrace{\sum_{j=1}^{m} p_j(\sum_{i=1}^{n} x_{ij} - 1)}_{\text{constraint for good } j}$$

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.**Primal feasibility:Dual feasibility:** $x_{ij} \ge 0$ for all $i \in \mathcal{B}, j \in \mathcal{G}$. $p_j \ge 0$ for all $j \in \mathcal{G}$.

 x^* satisfies the KKT conditions.

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.**Primal feasibility**:**Dual feasibility**: $x_{ij} \ge 0$ for all $i \in \mathcal{B}, j \in \mathcal{G}$. $p_j \ge 0$ for all $j \in \mathcal{G}$.

$$\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j = 0 \text{ if } x_{ij} > 0.$$

$$\frac{\partial L(x,p)}{\partial x_{ij}} = \frac{u_{ij}}{u_i} - p_j \le 0 \text{ if } x_{ij} = 0.$$

$$\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} = 0 \text{ if } p_j > 0.$$

$$\frac{\partial L(x,p)}{\partial p_j} = 1 - \sum_{i=1}^n x_{ij} \ge 0 \text{ if } p_j = 0.$$
Intro to AGT

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

 $\min_{p \ge 0} \max_{x \ge 0} L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p) \text{ since it is } convex - concave,$

where $L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).$

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

 $\min_{p \ge 0} \max_{x \ge 0} L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p) \text{ since it is } convex - concave,$

where $L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).$

Remark: Observe that dual variables *p* penalize if a constraint is violated.

Let (x^*, p^*) satisfy the KKT conditions. Then (x^*, p^*) solves

 $\min_{p \ge 0} \max_{x \ge 0} L(x, p) = \max_{x \ge 0} \min_{p \ge 0} L(x, p) \text{ since it is } convex - concave,$

where
$$L(x, p) = \sum_{j=1}^{n} \ln u_i - \sum_{j=1}^{m} p_j (\sum_{i=1}^{n} x_{ij} - 1).$$

Remark: Observe that dual variables *p* penalize if a constraint is violated.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good *j*, there exists a buyer *i* with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- *Equilibrium utilities and prices are unique.*
- If all u_{ij} 's are rational then allocations and prices are rational.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good *j*, there exists a buyer *i* with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- *Equilibrium utilities and prices are unique.*
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good *j*, there exists a buyer *i* with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)

Theorem (Fisher Market). For the linear case of Fisher Market and assuming that for each good *j*, there exists a buyer *i* with $u_{ij} > 0$ then:

- *The set of equilibrium allocations is convex.*
- Equilibrium utilities and prices are unique.
- If all u_{ij} 's are rational then allocations and prices are rational.

Proof. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

By assumption we have $p_j^* > 0$ for all $j \in \mathcal{G}$ (why?)

By KKT we have there exists buyer *i* so that $u_{ij} > 0$. We conclude from KKT $p_j^* \ge \frac{u_{ij}}{\sum_{j'=1}^m u_{ij'} x_{ij'}^*} > 0$.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that $p_j^* > 0$ for all $j \in \mathcal{G}$.

Positive prices \implies

By complementary slackness we have $\sum_{i=1}^{n} x_{ij}^* = 1$.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that
$$p_j^* > 0$$
 for all $j \in \mathcal{G}$. Positive prices
2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$. Goods sold out

Using KKT conditions for fixed buyer *i* we also have for $x_{ij}^* > 0$

$$\frac{u_{ij}}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*$$

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that
$$p_j^* > 0$$
 for all $j \in \mathcal{G}$.

Positive prices

2) We showed that $\sum_{i=1}^{n} x_{ij}^* = 1$ for all $j \in \mathcal{G}$. Goods sold out

Using KKT conditions for fixed buyer *i* we also have for $x_{ij}^* > 0$

$$\frac{u_{ij}}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = p_j^* \Rightarrow \frac{u_{ij} x_{ij}^*}{\sum_{j'=1}^{m} x_{ij'}^* u_{ij'}} = x_{ij}^* p_j^*$$

Summing over all goods $j \in \mathcal{G}$ the above we have

$$1 = \frac{\sum_{j=1}^{m} u_{ij} x_{ij}^{*}}{\sum_{j'=1}^{m} x_{ij'}^{*} u_{ij'}} = \sum_{j=1}^{m} x_{ij}^{*} p_{j}^{*}$$

Intro to AGT

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

1) We showed that
$$p_j^* > 0$$
 for all $j \in \mathcal{G}$.Positive prices2) We showed that $\sum_{i=1}^n x_{ij}^* = 1$ for all $j \in \mathcal{G}$.Goods sold out3) We showed that $\sum_{j=1}^m x_{ij}^* p_j^* = 1$ for all $i \in \mathcal{B}$.Buyers spent all their money

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

Proof cont. Let x^* be an optimum of EG program and let p^* be the dual variables so that (x^*, p^*) satisfy the KKT constraints. We shall show that (x^*, p^*) is a market equilibrium.

Hence (x^*, p^*) is a market equilibrium. Since EG is a convex program, the set x^* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since ln is a strictly concave function.

By doing the transformation $q_j = \frac{1}{p_j}$ the prices should satisfy a linear system (by KKT conditions) with rational coefficients.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^{\rho}\right)^{\frac{1}{\rho}}$$
, for $-\infty < \rho \le 1$.

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

Other utility functions

CES (Constant elasticity of substitution) utility functions:

$$u_i(x) = \left(\sum_{j=1}^m u_{ij} x_{ij}^{\rho}\right)^{\frac{1}{\rho}}$$
, for $-\infty < \rho \le 1$.

Remark:

- $u_i(x)$ is concave function.
- If $u_{ij} = 0$, then the corresponding term in the utility function is always 0.
- If $u_{ij} > 0$, $x_{ij} = 0$, and $\rho < 0$ then $u_i(x) = 0$ no matter what the other x_{ij} 's are.

$$\rho = 1$$
 \longrightarrow Linear utility form

 $\rho \rightarrow -\infty$ — Leontief utility form

 $\rho \rightarrow 0$ \longrightarrow Cobb-Douglas form

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Market dynamics:

Each time step the buyers face the same market parameters, (goods, budget constraint, utility function) while the buyers make their bidding decisions according to the previous market actions

Notation:

• $b_{ij}^{(t)}$ the bid of buyer *i* for good *j* at time *t*.

•
$$p_j^{(t)} = \sum_{i \in \mathcal{B}} b_{ij}^{(t)}$$
 price for good *j*.

• Allocation
$$x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$$
.

• Utility of agent *i* from good *j* is $u_{ij}^{(t)} = x_{ij}^{(t)}w_{ij}$.

• Utility
$$u_i^{(t)} = \sum_{j \in \mathcal{G}} u_{ij}^{(t)}$$
. Bid $b_i^{(t)} = \sum_{j \in \mathcal{G}} b_{ij}^{(t)}$.

- $b_{ij}^{(t)}$ the bid of buyer *i* for good *j* at time *t*.
- $p_j^{(t)} = \sum_i b_{ij}^{(t)}$ price for good *j*.
- Allocation $x_{ij}^{(t)} = \frac{b_{ij}^{(t)}}{p_j^{(t)}}$.
- Utility of agent *i* from good *j* is $u_{ij}^{(t)} = x_{ij}^{(t)}w_{ij}$.
- Utility $u_i^{(t)} = \sum_{j \in \mathcal{G}} u_{ij}^{(t)}$. Bid $b_i^{(t)} = \sum_{j \in \mathcal{G}} b_{ij}^{(t)}$.

For each agent i and good j set

$$b_{ij}^{(t+1)} = \frac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Intro to AGT

For each agent i and good j set

$$b_{ij}^{(t+1)} = rac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

For each agent i and good j set

$$b_{ij}^{(t+1)} = rac{u_{ij}^{(t)}}{u_i^{(t)}}$$

Theorem (Convergence). The proportional response dynamics converges to a market equilibrium in the Fisher market with linear utility functions. For linear functions, it converges to an ϵ -market equilibrin in $O\left(\frac{1}{\epsilon^2}\right)$ iterations.

Remark:

- The convergence result holds for CES utilities with a different rate.
- Similar rate to Multiplicative Weights Method (not a coincidence).

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$b_{ij}^* = x_{ij}^* \cdot p_j^*.$$

The potential function will be (show it is decreasing)

$$\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).$$

Proportional Response Dynamics: Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (x^*, p^*) be a market equilibrium (optimum for EG program). We set

$$b_{ij}^* = x_{ij}^* \cdot p_j^*.$$

The potential function will be (show it is decreasing)

$$\Phi^{(t)} = \sum_{i \in \mathcal{B}} \mathrm{KL}(b_i^* || b_i^{(t)}).$$

Remark:

- KL divergence $KL(x||y) = \sum x_i \log \frac{x_i}{y_i}$ for distributions *x*, *y*.
- $KL(x||y) \ge 0$, pseudo-distance, symmetry not satisfied.