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Driven by a rule: Supply meets demand!
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Definitions

Definition (Market). A market consists of:
o A set B of n buyers/traders.
o Aset G of m goods.
o Each buyer i has e; amount of $. W.l.o.g assume e; = 1.
* b; denotes the amount of each good. W.l.o.g b; = 1.
* u;j denotes the utility derived by i on obtaining a unit amount of good of j.

* Each good j is associated with a price p.
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Definitions

Definition (Market). A market consists of:
o A set B of n buyers/traders.
o Aset G of m goods.
o Each buyer i has e; amount of $. W.l.o.g assume e; = 1.
* b; denotes the amount of each good. W.l.o.g b; = 1.
* u;j denotes the utility derived by i on obtaining a unit amount of good of j.

* Each good j is associated with a price p.

Definition (Fisher Market). A market so that the utilities are linear:
Let x;j be the amount of units buyer i gets of good j then

u; = Z xl-]-ul-j.

jeg
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Definitions

Definition (Market clearance). A vector of price (x*, p*) is called
market equilibrium if for given prices p*, each buyer is assigned
an optimal basket of goods relative the prices and buyer’s budget
and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!
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Definitions

Definition (Market clearance). A vector of price (x*, p*) is called
market equilibrium if for given prices p*, each buyer is assigned
an optimal basket of goods relative the prices and buyer’s budget
and there is no surplus or deficiency of any of the goods

Goal: Compute allocations and prices in polynomial time!

Given an arbitrary vector of prices p = 0, from each buyer’s i
perspective:

max Zj:l XijUij Budget constraint.
st Yl pjxij <1 =
X; = 0
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Eisenberg-Gale Convex Program

Given an arbitrary vector of prices p = 0, from each buyer’s i
perspective:

max ) ;_j Xijlj Budget constraint.
Ss.t 2;11:1 P]xzj <1 I

xiZO

_ . Demand for good j.
From the perspective of good j:

i1 Xjj < 1 ===t Supply for good j.
pi =0
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Eisenberg-Gale Convex Program

Given an arbitrary vector of prices p = 0, from each buyer’s i
perspective:

m
max ¥ 7t oxiu .
Z“J =1 1" Budget constraint.

S.t Z;n:l PjXij <]
X >0

Demand for good j.
From the perspective of good j:

i1 Xjj < 1 ===t Supply for good j.
pi =0

Can we find (x, p) s.t all are satisfied simultaneously?
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Eisenberg-Gale Convex Program

Consider the following convex program:

n
max Ej:l In u;

s.tu; = Z,;-”:l u;ix;j for all buyers i € B,
i—1 Xjj < 1forall goods j € G,
x;j>0forallie B, j€g.
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Eisenberg-Gale Convex Program

Consider the following convex program:

max E;flzl In u;
s.tu; = Z,;-”:l u;ix;j for all buyers i € B,
i—1 Xjj < 1forall goods j € G,
x;j>0forallie B, j€g.

Remark:

* The domain above is compact hence there is an optimal solution x™.
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Eisenberg-Gale Convex Program

Consider the following convex program:

max Z” 1 Inu;

s.tu; = Z,’-”_l u;ix;j for all buyers i € B,
i—1 Xjj < 1forall goods j € G,
x;j>0forallie B, j€g.

Remark:
* The domain above is compact hence there is an optimal solution x*.

* Note that there are no budget constraints!
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Eisenberg-Gale Convex Program

Consider the following convex program:

max E” 1 Inu;

s.tu; = Z,’-”_l u;ix;j for all buyers i € B,
i—1 Xjj < 1forall goods j € G,
x;j>0forallie B, j€g.

Remark:
* The domain above is compact hence there is an optimal solution x*.
e Note that there are no budget constraints!
¢ Maximizing a concave function is a convex program and can be

solved in poly-time for affine constraints!
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Eisenberg-Gale Convex Program

Consider the following convex program:

max 2” 1 Inu;

s.tu; = Z’f”_ u;ix;j for all buyers i € B,
i—1 Xjj < 1forall goods j € G,
x;j>0forallic B, jeg.

Remark:
* The domain above is compact hence there is an optimal solution x*.
¢ Note that there are no budget constraints!

¢ Maximizing a concave function is a convex program and can be
solved in poly-time for affine constraints!

Is x™ an equilibrium? What are the prices?
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Eisenberg-Gale Convex Program

x* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization
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Eisenberg-Gale Convex Program

x* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

n n
L(x,p) = Zlnui— ;7”:1 p]-(z xi]-—l)
i=1 =l

-

e — )
objective constraint for good j

Remark: Langrangian involves objective and constraints!
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Eisenberg-Gale Convex Program

x* satisfies the KKT conditions.

KKT are first-order conditions for constrained Optimization

n n
L(x,p) = Zlnui— ;f”:l p]-(z xi]-—l)
=1 =l

-

e — )
objective constraint for good j

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.
Primal feasibility: Dual feasibility:
x;jj>0forallie B, j€g. pj > 0forall j€g.
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Eisenberg-Gale Convex Program
x* satisfies the KKT conditions.

n n
L(x,p) = Zlnui— }5”’21 pj(inj—l)
i=1 =l

-

e e G '
objective constraint for good j

Remark: Langrangian involves objective and constraints!

KKT conditions: x are primal variables, p are dual variables.

Primal feasibility: Dual feasibility:
xjj>0forallie B, jeg. pj > 0forall j€Gg.
IL(xp) _ Uy

9] _u_i_pf:Oifxi]'>0' \

oL (x, Ujj .
—a(;.p) = u—l]—p] §O1fxl]:O
j Complementary Slackness
aLng’P) =1 — :-l:l xi]- = 0 if p] > 0.
Pj
aL(x, ) = 1 — Z?:l xi]- 2 0 if P] = 0. }
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Eisenberg-Gale Convex Program

Let (x*, p*) satisfy the KKT conditions. Then (x*, p*) solves

min max L(x, p) = maxmin L(x, p)| since it is convex — concave,
p=0 x>0 x>0 p=0

where L(x,p) = ?:1 Inu; — }7”:1 pi(Xiq xij —1).
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Eisenberg-Gale Convex Program

Let (x*, p*) satisfy the KKT conditions. Then (x*, p*) solves

minmax L(x, p) = maxmin L(x, p
p=0 x>0 x>0 p=0

)

| since it 1s convex — concave,

where L(x,p) = 2?21 Inu; — }7”:1 pi(Xiq xij —1).

Remark: Observe that dual variables p penalize if a constraint is violated.
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Eisenberg-Gale Convex Program

Let (x*, p*) satisfy the KKT conditions. Then (x*, p*) solves

minmax L(x, p) = maxmin L(x, p
p=0 x>0 x>0 p=0

N’

| since it 1s convex — concave,

where L(x,p) = 2?21 Inu; — }7”:1 pi(Xiq xij —1).

Remark: Observe that dual variables p penalize if a constraint is violated.

Theorem (Fisher Market). For the linear case of Fisher Market and assuming
that for each good j, there exists a buyer i with u;; > 0 then:

o The set of equilibrium allocations is convex.

* Equilibrium utilities and prices are unique.

e Ifall u;;’s are rational then allocations and prices are rational.
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Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming
that for each good j, there exists a buyer i with u;; > 0 then:

o The set of equilibrium allocations is convex.
e Equilibrium utilities and prices are unique.

 Ifall u;;’s are rational then allocations and prices are rational.

Proof. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.
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Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming
that for each good j, there exists a buyer i with u;; > 0 then:

o The set of equilibrium allocations is convex.

e Equilibrium utilities and prices are unique.

 Ifall u;;’s are rational then allocations and prices are rational.

Proof. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a

market equilibrium.

By assumption we have p; > 0 for all j € G (why?)
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Eisenberg-Gale Convex Program

Theorem (Fisher Market). For the linear case of Fisher Market and assuming
that for each good j, there exists a buyer i with u;; > 0 then:

o The set of equilibrium allocations is convex.
e Equilibrium utilities and prices are unique.

 Ifall u;;’s are rational then allocations and prices are rational.

Proof. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

By assumption we have p; > 0 for all j € G (why?)

By KKT we have there exists buyer ¢ so that u;; > 0. We conclude from KKT
P} 2 s > 0.
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

1) We showed that p? > 0 for all j € G. Positive prices j

By complementary slackness we have Z?zl xi; = 1.
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (x*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

Using KKT conditions for fixed buyer ¢ we also have for z7; > 0

*

ok J*"1) ok

=0 g =
j'=1 Lij Wig’

Uij

m *
er:1 L0 Wig
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a

market equilibrium.

1) We showed that p? > 0 for all j € G. Positive prices

2) We showed that > " ,zf, = 1forall j € G.| Goods sold out

Using KKT conditions for fixed buyer ¢ we also have for z7; > 0

*
Uj j ¥ Uij i,

D jr—1 Ty i T jim T i
Summing over all goods 7 € G the above we have

D il U
L g=1 ij L zg
1= Z 3P

Z =1 %!“w

. 3k 3k
= LijP;j
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

Positive prices

Goods sold out

Buyers spent all their money

Intro to AGT



Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

Positive prices

Goods sold out

Buyers spent all their money

Hence (x*,p*) is a market equilibrium. Since EG is a convex program, the set
x* of optimal solutions to EG is a convex set.
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (z*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

Positive prices

Goods sold out

Buyers spent all their money

Hence (x*,p*) is a market equilibrium. Since EG is a convex program, the set
x* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since In is a strictly concave function.
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Eisenberg-Gale Convex Program

Proof cont. Let x* be an optimum of EG program and let p* be the dual variables
so that (x*,p*) satisfy the KKT constraints. We shall show that (z*,p*) is a
market equilibrium.

Positive prices

Goods sold out

Buyers spent all their money

Hence (x*,p*) is a market equilibrium. Since EG is a convex program, the set
x* of optimal solutions to EG is a convex set.

Uniqueness of utilities is derived since In is a strictly concave function.

By doing the transformation ¢q; = % the prices should satisfy a linear system
J

(by KKT conditions) with rational coefficients.
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Other utility functions

CES (Constant elasticity of substitution) utility functions:

m
u;j(x) = (Z ui]-x‘;.) , for —co < p < 1.
j=1

Remark:
* u;(x) is concave function.
If u;; = 0, then the corresponding term in the utility function is always 0.

* Ifu;; >0,x; =0,and p < 0 then u;(x) = 0 no matter what the other x;;’s are.
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Other utility functions

CES (Constant elasticity of substitution) utility functions:

m
ui(x) — (Z ui]-x‘;.) , for —o0 < Y < 1.
j=1

Remark:
* u;(x) is concave function.
If u;; = 0, then the corresponding term in the utility function is always 0.

* Ifu;; >0,x; =0,and p < 0 then u;(x) = 0 no matter what the other x;;’s are.

O =1 =meep [inear utility form
p — —oo == | eontief utility form

0 — 0 =———p Cobb-Douglas form

Intro to AGT



Proportional Response Dynamics

Market dynamics:

Each time step the buyers face the same market parameters,
(goods, budget constraint, utility function) while the buyers make
their bidding decisions according to the previous market actions
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Proportional Response Dynamics

Market dynamics:

Each time step the buyers face the same market parameters,
(goods, budget constraint, utility function) while the buyers make
their bidding decisions according to the previous market actions

Notation:
. bi(;) the bid of buyer i for good ; at time ¢.

* P](-t) = ). icB bg) price for good j.

e Allocation xg) — ’(jt).

1(]t) — xl(t)wl]

e Utility of agent 7 from good j is u i

e Utility u”) = ¥egull). Bid b{") = ¥eq b},
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Proportional Response Dynamics

. bi(;) the bid of buyer i for good j at time t.

. p](-t) =) bg) price for good j.

e Allocation xl(jt) = %
Pj

(t) (t)

e Utility of agent 7 from good j is Uji' = X Wij.

o Utility u = )icG u(t) Bid b(f =Y icg b(t :

For each agent i and good j set

40
pt+1) _ L
1] uz(t)
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Proportional Response Dynamics

For each agent i and good j set

(t)
pt+D) _ i
1 (t)

u;

Theorem (Convergence). The proportional response dynamics converges to
a market equilibrium in the Fisher market with linear utility functions.

For linear functions, it converges to an e-market equilibrin in O (61—2) iterations.
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Proportional Response Dynamics

For each agent i and good j set

(t)
p(t+D) _ M
1 ()

u;

Theorem (Convergence). The proportional response dynamics converges to
a market equilibrium in the Fisher market with linear utility functions.

For linear functions, it converges to an e-market equilibrin in O (e%) iterations.

Remark:
* The convergence result holds for CES utilities with a different rate.

e Similar rate to Multiplicative Weights Method (not a coincidence).
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Proportional Response Dynamics:
Proof of Convergence

Proof idea. We need to come up with a potential function.
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Proportional Response Dynamics:
Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (z*,p*) be a market equilibrium (optimum for EG program). We set
bij = wij - Dj-

The potential function will be (show it is decreasing)

o =Y " KL(v;|b").

1€B
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Proportional Response Dynamics:
Proof of Convergence

Proof idea. We need to come up with a potential function.

Let (z*,p*) be a market equilibrium (optimum for EG program). We set
bij = wij - Dj-

The potential function will be (show it is decreasing)

o =Y " KL(v;|b").

1€B

Remark:

Xi

e KL divergence KL(x||y) = ¥ x;log 7!

for distributions x, y.

e KL(x||y) > 0, pseudo-distance, symmetry not satisfied.

Intro to AGT
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