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Relaxing Nash equilibrium

* NASH is computationally hard.

Question: Are there other equilibrium
notions that are computationally tractable?
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Relaxing Nash equilibrium

* NASH is computationally hard.

Question: Are there other equilibrium
notions that are computationally tractable?

Answer: Correlated equilibria, i.e., relaxing
the product distribution assumption.
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, C), (C, C) with probability % each.
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, ('), (C, C) with probability % each.

e If agent row is recommended to choose ', then column is recommended

to play C' or D with equal probability. Expected payoft of row is % -0+
1

5(—2) = —1 which is greater than switching to D (expected payoff is -4.5).
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, ('), (C, C) with probability % each.

e If agent row is recommended to choose ', then column is recommended

to play C or D with equal probability. Expected payoft of row is % -0 +
%(—2) = —1 which is greater than switching to D (expected payoff is -4.5).
e If agent row is recommended to choose D, then column is recommended

to play C'. Expected payoff of row is 1 which is greater than switching to
C' (expected payoff is 0).
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Example (Correlated eq.)

Chicken-out Dare

Chicken-out e 2,1
-2 -10, -1
Dare L 0,-10

Suppose agents are recommended (C, D), (D, C), (C, C)) with probability & each.

If agent row is recommended to choose (', then column is recommended

to play C or Ij Eof row is 1 -0 +
1

(-2)=-1w Slmllarly for column player' -

If agent row is (C’ D) ( D C’) and (C’ C’) atnallis recommended

to play C'. Exj 1/3 each is a correlated eq. an switching to
C' (expected p:
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Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.
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Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.

Definition (Correlated Equilibrium). Correlated equilibrium is a
distribution x over S such that for all agents i and strategies b, b’ of i

]ESNX [ui(b,s_i)|si — b] > ]Eswx[ui(b',s_iﬂsi — b]

Intro to AGT



Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.

Definition (Correlated Equilibrium). Correlated equilibrium is a
distribution x over S such that for all agents i and strategies b, b’ of i

Es~x[ti(b,5)|si = b] = Esy[u;(b',s_;)|si = b].
Similarly for all agents i and swapping functions f : S; — S;,

Esy[1i(8i,5-i)] = Esmy 1 (f(si),5-i)].
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Correlated equilibrium and Nash

Remarks:

 Knowing an agent her recommended action,
she can infer something about other players’
moves. Yet she is better off playing the
recommended action.

* Suppose y is a product distribution. Then
correlated eq. corresponds to Nash eq.
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Correlated equilibrium and Nash

Remarks:

 Knowing an agent her recommended action,
she can infer something about other players’
moves. Yet she is better off playing the
recommended action.

Set of Nash equilibria C Set of correlated equilibria.
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Example (Coarse Correlated eq.)

E3 €= €2
€3 | o0 | 11 | 1-1
¢€= | 11 | o0 | -1
E= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P, R), (P, S), (S, R), (S, P) are chosen with
probability % each.
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Example (Coarse Correlated eq.)

E3 €= €2
€3 | o0 | 11 | 1-1
¢€= | 11 | o0 | -1
E= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P, R), (P, S), (S, R), (S, P) are chosen with
probability % each.

e If agent row plays R, agent column responds with either P or S with equal
probability. If column deviates (say starts responding with paper higher
possibility) she will incur more loss when row plays S (recall row plays R
as well S with equal probability).
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Example (Coarse Correlated eq.)

E3 €= €2
€3 | o0 | 11 | 1-1
¢€= | 11 | o0 | -1
E= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P, R),(P,S), (S, R), (S, P) are chosen with
probability % each.

e If agent column is instructed to play P then she knows that other player
is playing either R or S and column has average payoff 0. She can change
then to R and improve payoff to 1/2 compared to zero if she plays rec-
ommended action. In this case, column could exploit knowledge of action
recommendation to improve her payoff.
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Definitions

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium
is a distribution x over S such that for all agents i and strategies b of i

Esx[ui(s)] > Esyui(b,s_;)].

Remark: The difference between coarse correlated and correlated is that we
can choose a ““smart” swap function, namely f “knows” the distribution .
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Definitions

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium
is a distribution x over S such that for all agents i and strategies b of i

Esx[ui(s)] > Esyui(b,s_;)].

Set of correlated equilibria C Set of coarse correlated equilibria.
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Full picture of Inclusions

even easier to compute

easy to compute

guaranteed to exist
but hard to compute

need not exist
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Online learning in Games

Definition. At each time stept = 1...T.
(£)

® Each player i chooses x;° € A; (simplex).
()

e Each player experiences payoff u;(x(t)) and observes all players strategies x;' .
ptay P pay ptay g1es X;
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Online learning in Games

Definition. At each time stept = 1...T.
(£)

® Each player i chooses x;° € A; (simplex).

(t)
e

e Each player experiences payoff u;(x(t)) and observes all players strategies x
Player’s i goal is to minimize the (time average) Regret, that is:
T

- Iréa:gXZuz a, a’:() Z (t)

If Regret = 0 as T — oo, the algorithm is called no-regret.
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A no-regret Algorithm

Definition (Online Gradient Descent). Let ¢; : X — IR be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. Online GD is defined:

Initialize at some x.
For t:=1 to T do

1. Yt = Xt — octVEt(xt).
2. xpp1 = Hx(y).

Regret: % (2?21 O+ (x¢) — miny Ethl Et(x)) :
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A no-regret Algorithm

Definition (Online Gradient Descent). Let ¢; : X — IR be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. Online GD is defined:

Initialize at some xg. .
For t:=1 to T do step-size

1. Yt = Xt — a%%
O = —u;(x(®)

2. xpy1 = Ix(yr).

Regret: % (2?21 O+ (x¢) — miny Ethl Et(x)) :
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Analysis of Online GD for L-Lipschitz

Theorem (Online Gradient Descent). Let ¢; : X — R be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. It holds

Remarks:

2n2

L . .
* Ifwewanterrore, weneedT =0 ( ) iterations.

€2

* | could have written Multiplicative Weights Update. This is another no-regret

algorithm! Same regret guarantees, i.e., O (ﬁ) .
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) _ /;(x).

Et(xt) — Et(x*) § Vﬁt(xt)T(xt — x*) COIIVQXity,
1

- (X_(Xt — ) ' (x; — x*) definition of GD,
t
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) _ /;(x).

Et(xt) — Et(x*) § Vﬁt(xt)T(xt — x*) COIlVQXity,

- al(xt — ) ' (x; — x*) definition of GD,
t

1
= 5= ( x; — x* §—|— Xt —ytHg — [|yr — x*H%) law of Cosines,
f

_ 1 * (|2 % (12 Kt 2
- E( Xt =Xl — (Y — X “2) + > |Vl (x¢)]|5 Def. of vy,
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) _ /;(x).

Et(xt) — Et(x*) § Vﬁt(xt)T(xt — x*) COIIVQXi’[y,

- Oét( — ;) (x; — x*) definition of GD,

— 2%“ ( x; — x* % + |lx; — %H% — [|yr — x*H%) law of Cosines,
= 5o (I =13 = I = x°1B) + 5 [V &(x0)} Def. of s,
< o (=B Iy = x°1B) + 22~ Lipsehie

< %kt (”xt —x*[5 = [lxe4r —x Hz) + oéz—Lz projection.
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Analysis of Online GD for L-Lipschitz

Proof cont. Since

/ 0.(x%) < 1 * || 2 * 2 “sz
() = (x) < 5l =21 = e = x°) + =5
taking the telescopic sum we have

T

oY o a2 (1 1 12 d
> (Le(xe) — Ce(x ))Stgﬂxt—x“z TR T +5 ) e

t=1
DZT 1 1 LZT
< _— — .
_22(‘% )—I—2zaét

t=1 -1
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Analysis of Online GD for L-Lipschitz

Proof cont. Since

/ 0.(x%) < 1 * || 2 * 2 “sz
() = (x) < 5l =21 = e = x°) + =5
taking the telescopic sum we have
T T 2 T
2 (1 1 L
t; (e (xt) — £ (x™)) < E [x: — x*||5 (2% _ 2%_1) + = t_zloq.

D?> & (1 1 ) 12
< 5 — = — |+ = ) &

2 t; Kt 0 q 2 t;

D> 12 LD LD
< < —VT+2VT—.
_204T+2§at_2\/_+ \/_2

where we used the fact > ﬁ < 2T and a; = %.
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [, = —u; (x(t))
where x(® is the mixed strategy profile at iterate t.
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [, = —u; (x(t))
where x(® is the mixed strategy profile at iterate t.

 Let gt be the product distribution on S induced by x (.
* Let o be the uniform distribution over {¢}, ...,cT}.
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [; = —u; (x(t))
where x(® is the mixed strategy profile at iterate t.

 Let gt be the product distribution on S induced by x(®.
* Let o be the uniform distribution over {¢}, ...,cT}.

We conclude that for each agent i

E Ly E
SNU’[ul(S)] Tt:l s~0’f[ (5)]
1 T
min By [u;(b,s_;)] = min — IE'SN(Tf ui(b,s-;)]

beS; bes; T
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Computing coarse correlated equilibria

Suppos

Lipschitz
where ; 3
. Lot IbIélglllEsmg[ u;j(b,s_;)] — Egolu E\/_
* Letd
We co

IESNU' Lll Z ]ESN(Tt

%réisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]
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Computing coarse correlated equilibria

Suppos Lipschitz
where ; 3 @/’
. Letd Il;mgl Es~o|ui(b,5_;)] — Eseo|u = 2 /T
* Letd

Choosing T = 75 we conclude ¢ is e-approximate CCE!
We co

IESNU' Lll Z ]ESN(Tt

%réisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]
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Computing coarse correlated equilibria

Suppos

Lipschitz

where 3 @/'
. min IESNO'[ui(b, S—I)] IESNU'

Let ¢ bes;

* Let
o Choosing T' = = we conclude 0 is e- approx1mate CCE!
We col If we use MWUA, it gives O (12_2}1)

IESNU' Lll Z ]ESN(Tt

%réisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]

Intro to AGT





