L8 Other notions of equilibria
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Relaxing Nash equilibrium

* NASH is computationally hard.

Question: Are there other equilibrium
notions that are computationally tractable?
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Relaxing Nash equilibrium

* NASH is computationally hard.

Question: Are there other equilibrium
notions that are computationally tractable?

Answer: Correlated equilibria, i.e., relaxing
the product distribution assumption.
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, C), (C, C) with probability % each.
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, C), (C,C) with probability % each.

e If agent row is recommended to choose ', then column is recommended

to play C or D with equal probability. Expected payoff of row is % -0+
1

5(—2) = —1 which is greater than switching to D (expected payoff is -4.5).
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Example (Correlated eq.)

Chicken-out Dare
Chicken-out H 2,1
1, -2 -10, -1

Dare thtlt

Suppose agents are recommended (C, D), (D, C), (C,C) with probability % each.

e If agent row is recommended to choose ', then column is recommended

to play C or D with equal probability. Expected payoff of row is % -0+
2(—2) = —1 which is greater than switching to D (expected payoff is -4.5).
o If agent row is recommended to choose D, then column is recommended

to play C'. Expected payoff of row is 1 which is greater than switching to
(' (expected payoff is 0).
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Example (Correlated eq.)

Chicken-out Dare

Chicken-out e 2,1
-2 -10, -1
Dare L 0,-10

Suppose agents are recommended (C, D), (D, C), (C, C)) with probability % each.

If agent row is recommended to choose (', then column is recommended

to play C or Ij

(-2)=—-1w Slmllarly for column player' '

If agent row is (C’ D) ( D C’) and (C C’) atnatlis recommended

to play C'. Exj 1/3 each is a correlated eq. an switching to
C' (expected p;
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Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.
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Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.

Definition (Correlated Equilibrium). Correlated equilibrium is a
distribution x over S such that for all agents i and strategies b, b’ of i

Es~x[1i(b,5-i)|si = b] > BEsy[u;(b',s_;)|si = b].
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Definitions

Definition (Recall). A game is specified by
e set of n players |n| = {1, ..., n}
e For each player i a set of strategies/actions S,;.
* set of strategy profiles S = S1 X ... X Sy.
e Each agent i has a utility u; : S — [—1, 1] denoting the payoff of i.

Definition (Correlated Equilibrium). Correlated equilibrium is a
distribution x over S such that for all agents i and strategies b, b’ of i

Es~x[1i(b,5—i)|si = b] > Esy[u;(b',s_;)|s; = b].

Similarly for all agents i and swapping functions f : S; — 5;,

By [14i(si,5-i)] = Bsmy i (f(5:),5-4)]-
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Correlated equilibrium and Nash

Remarks:

 Knowing an agent her recommended action,
she can infer something about other players’
moves. Yet she is better off playing the
recommended action.

* Suppose y is a product distribution. Then
correlated eq. corresponds to Nash eq.
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Correlated equilibrium and Nash

Remarks:

 Knowing an agent her recommended action,
she can infer something about other players’
moves. Yet she is better off playing the
recommended action.

Set of Nash equilibria C Set of correlated equilibria.
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Example (Coarse Correlated eq.)

E3 €2 €3
€3 | o0 | -1 | 11
€= | 11 0,0 | -1,1
= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P,R),(P,S), (S, R), (S, P) are chosen with
probability % each.
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Example (Coarse Correlated eq.)

E3 €2 €3
€3 | o0 | -1 | 11
€= | 11 0,0 | -1,1
= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P,R),(P,S), (S, R), (S, P) are chosen with
probability % each.

e If agent row plays R, agent column responds with either P or S with equal
probability. If column deviates (say starts responding with paper higher
possibility) she will incur more loss when row plays S (recall row plays R
as well S with equal probability).
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Example (Coarse Correlated eq.)

E3 €2 €3
€3 | o0 | -1 | 11
€= | 11 0,0 | -1,1
= 1,1 1,-1 | 0,0

Suppose the actions (R, P), (R, S), (P,R), (P, S), (S, R), (S, P) are chosen with
probability % each.

e If agent column is instructed to play P then she knows that other player
is playing either R or S and column has average payoff 0. She can change
then to R and improve payoff to 1/2 compared to zero if she plays rec-
ommended action. In this case, column could exploit knowledge of action
recommendation to improve her payoft.
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Definitions

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium
is a distribution x over S such that for all agents i and fixed strategies b’ of i

Es~x[14i(5)] = Esny[ui(V',s-)].

Remark: The difference between coarse correlated and correlated is that we
can choose a ““smart” swap function, namely f “knows” the distribution .
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Definitions

Definition (Coarse Correlated Equilibrium). Coarse correlated equilibrium
is a distribution x over S such that for all agents i and fixed strategies b’ of i

Es~x[14i(5)] = Esny[ui(V',s-)].

Set of correlated equilibria C Set of coarse correlated equilibria.
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player.
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player.

X in simplex: } ,, x(a,b) =1, x >0
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player.

X in simplex: } ,, x(a,b) =1, x >0
Expected utility of row: ), , x(a,b) A,
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player.

X in simplex: } ,, x(a,b) =1, x >0

Expected utility of row: ), , x(a,b) A,
Expected utility of column: }_,, x(a,b)B,
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player.

X in simplex: ), , x(a,b
Expected utility of row: ), , x(a,b
(a,b
(a,b

No incentive to change to fixed a’: Y, ;, x(a,
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by

column player.

(a,b) =

Expected utility of row: Za,b x(a,b)
Expected utility of column: }_,, x(a,b)B,
(a,0) Agpy = Lap X(a,0) Agrp
(a,0)Bap = Lap X(a,0) By

No incentive to change to fixed a’: Y, ;, x(a,
No incentive to change to fixed b': ), ;, x(a,
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Coarse Correlated Eqin P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player. 1

X in simplexZ}, ; x (4, w

Expected utility of row: ) ,, x(a,

ab = Zab%(a bm2
ab = ZabX(a b) @3

No incentive to change to fixed a’: € x (4,
No incentive to change to fixed b': €, x (4,

(a,0) =
(a,0)A,
Expected utility of column: }_,, x(a,b)B,
(a,b)A
(a,0)B
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Coarse Correlated Eq in P

Example (CCE in a bimatrix game). Given two players with payoff matrices A, B,
a CCE is a joint distribution x over (a,b) where a is chosen by row player and b by
column player. 1

X in simplexZ}, ; x (4, 1L, x=>0>

Expected utility of row: ) ,, x(a,

> Zab%(u me
ab = Zab%(ﬂ b) 5@3

No incentive to change to fixed a’: € x (4,
No incentive to change to fixed b': €, x (4,

(a,0) =
(a,0)A,
Expected utility of column: }_,, x(a,b)B,
(a,b)A,
(a,0)B

1,2,3 induce an LP!
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Full picture of Inclusions

even easier to compute

casy to compute

guaranteed to exist
but hard to compute

need not exist
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Online learning in Games

Definition. At each time step t = 1...T.
()

® Each player i chooses x;’ € A; (simplex).
(#)

e Each player experiences payoff u;(x\!)) and observes all players strategies x e
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Online learning in Games

Definition. At each time step t = 1...T.
()

® Each player i chooses x;’ € A; (simplex).

e Each player experiences payoff u;(x\!)) and observes all players strategies x](t).
Player’s i goal is to minimize the (time average) Regret, that is:
T

- I%%XZUZ a, x() Z (t)

If Regret = 0 as T — oo, the algorithm is called no-regret.
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A no-regret Algorithm

Definition (Online Gradient Descent). Let ¢; : X — IR be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. Online GD is defined:

Initialize at some x.
For t:=1 to T do

1. Yt = Xt — rxtVEt(xt).
2. xpp1 = Iy (ye).

Regret: + (Zthl Oe(x;) —minyg Y1 4 Et(x)) :
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A no-regret Algorithm

Definition (Online Gradient Descent). Let ¢; : X — IR be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. Online GD is defined:

Initialize at some xg. .
For t:=1 to T do step-size

1. Yt = Xt — aé%
Oy = —u;(x(®)

2. xpp1 = Iy (ye).

Regret: + (Zthl Oe(x;) —minyg Y1 4 Et(x)) :
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Analysis of Online GD for L-Lipschitz

Theorem (Online Gradient Descent). Let ¢; : X — R be family of convex

functions, differentiable and L-Lipschitz in some compact convex set X
of diameter D. It holds

Remarks:

2pn2

12D
* |fwewanterrore, weneedT =0 ( =

) iterations.
* | could have written Multiplicative Weights Update. This is another no-regret

lgorithm! Same regret rant ie. 1
algo Same regret guarantees, e,O(ﬁ)_
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) ¢;(x).

Cr(xt) — £(x*) < Ve (x) " (x4 — x*) convexity,
1

— oz_(xt — ) ' (x; — x*) definition of GD,
t
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) ¢;(x).

€t(xt) — €t(x*) < Vﬁt(xt)T(xt — x*) COHVGXity,

— ozl(xt — ) ' (x; — x*) definition of GD,
t

1
= 5= ( xr — x¥||5 + [l — vell5 — |lye — x*H%) law of Cosines,
t

- E( Xt =X |l = [[Yyr =X |2) - > |V 4i(xt)|)5 Def. of y,
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Analysis of Online GD for L-Lipschitz

Proof. Let x* be the argmin of ) ¢;(x).

€t(xt) — Et(x*) < Vﬁt(xt)T(xt — x*) COHVGXi’[y,

— Oét( — ) ' (x; — x*) definition of GD,

— %M ( xr — x¥||5 + [l — vell5 — |lye — x*H%) law of Cosines,
= 5 (I3 =13 = I3 = x° ) + 5 V(x| Det. of
< o (I = 2B~ Iy~ 1) + TLz Lipschitz,

< %M (”xt —x*[5 = [lxe4r —x Hz) + az—LZ projection.

Intro to AGT



Analysis of Online GD for L-Lipschitz

Proof cont. Since

bxe) = (x7) < 5= (v =705 = e —x°[3) + =5

L
206t

taking the telescopic sum we have

T T 2 T
Y ()~ 7)) < X =0 (5~ o) + 5 Lo
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Analysis of Online GD for L-Lipschitz

Proof cont. Since

* 1 %12 %12 “th
bxe) = (') < 5= (Il = 2715 = e = x°115) + =,
Xt 2
taking the telescopic sum we have
T T 2 T
1 1 L
Ce(xp) — £ (x%)) < —x*|3 - — Y a.
3 ()~ ) < X b= (5~ g ) + 5 L
D> & (1 1 ) 12 &
< = — —— |+ =) a

pz 12X LD LD
<—+—Y 4 < —VT+2VT—.
2ar 2 H 2

where we used the fact ) % < 2¢/T and oy = %.
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [, = —u; (x(t))
where x® is the mixed strategy profile at iterate t.
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [, = —u; (x(t))
where x® is the mixed strategy profile at iterate t.

 Let gt be the product distribution on S induced by x(®.
* Let o be the uniform distribution over {¢}, ..., 07}
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Computing coarse correlated equilibria

Suppose that each agent i uses no-regret dynamics (online GD), with [; = —u; (x(t))
where x® is the mixed strategy profile at iterate t.

 Let gt be the product distribution on S induced by x(®.
* Let o be the uniform distribution over {¢}, ..., 07}

We conclude that for each agent i

E Ly E
SNU’[ul(S)] thl s~0’f[ (S)]
1 T
min By [u;(b,s_;)] = min — IE'SN(Tf ui(b,s-;)]

bes; bes; T
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Computing coarse correlated equilibria

Suppos

Diameter
where ] 3
. Letd %rélg:IESNU[ (brs—z)] ]ESNO' E\/_
e Letq
We co

]ESNU' Lll Z ]ESN(Tt

%éisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]
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Computing coarse correlated equilibria

>uppos Diameter
where ; ;
et ??EMHW@54H—EWAWGH_ZVﬁ
e Letd

Choosing T = = we conclude ¢ is e-approximate CCE!
We co

]ESNU' Lll Z ]ESN(Tt

%éisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]
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Computing coarse correlated equilibria

Suppos

Diameter
where ]

. 3
Let ¢ %nl?EsNa[”i(brs—i)] Eso[ui(s)] < 5

. Let a

¢ el ¢

Choosing T = =5 we conclude ¢ is e-approximate CCE!
We co

If we use MWUA, it gives O (h;—zn)

]ESNU' Lll Z ]ESN(Tt

%réisr:IESNg[ui(b,s_i)] %élsnf ZIESNUt (ui(b,s_;)]
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