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Price of Anarchy

Suppose 100 drivers commute from A to B.
Drivers want to minimize the time.
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Suppose 100 drivers commute from A to B
Drivers want to minimize the time, -L_SE_J Delay is 1.5 hours for
everybody at the unique
Nash equilibrium.
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Price of Anarchy

Suppose 100 drivers commute from A to B.
Drivers want to minimize the time. Question: What if we add a new link?

€T
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Price of Anarchy

Suppose 100 drivers commute from A to B.

Drivers want to minimize the time. 100

Delay is now 2 hours for

everybody at the unique

Nash equilibrium.
Braess’s paradox

Adding a fast link is not always a good idea!
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Price of Anarchy

Suppose 100 drivers commute from A to B.

Drivers want to minimize the time. 100 Delay is now 2 hours for
: ' everybody at the unique
Nash equilibrium.
Braess’s paradox

Adding a fast link is not always a good idea!

PoA = performance of worst case NE
~ optimal performance if agents do not decide on their own

K Price of Anarchy (Koutsoupias, Papadimitriou 99°).
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Non-atomic selfish routing

Example: Simpler example. Pigou network.
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Non-atomic selfish routing

Example: Simpler example. Pigou network.
clr)=1

1 1
Cost 5 -1+ 3
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Non-atomic selfish routing

Example: Simpler example. Pigou network.
clr)=1

Cost 1 and PoA = %
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Non-atomic selfish routing

Example: Simpler example. Pigou network.
clr)=1

clr) ==
A non-atomic selfish routing game is defined by:

e Graph G(V,E).

e Source destination pairs (s1,%1), ..., (Sk, tk)-

e r; traffic from s; — ;.

e c.(.) > 0 cost function of edge e, continuous and non-decreasing.

e Flow is an equilibrium if all traffic is routed on cheapest paths.
Intro to AGT



Non-atomic selfish routing

Example: Simpler example. Pigou network.
clr)=1

c(z) =2 Cost of path: ¢,(f) => . ce(f)
A non-atomic selfish routing game is defined by: p(f) ecp Cel

Social Cost := Z,p focp(f)
® Graph G(VJ E)

e Source destination pairs (s1,%1), ..., (Sk, tk)-
e r; traffic from s; — ;.
e c.(.) > 0 cost function of edge e, continuous and non-decreasing.

e Flow is an equilibrium if all traffic is routed on cheapest paths.
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Non-atomic selfish routing

Example: Simpler example. Pigou network.
clr)=1

clr) ==
A non-atomic selfish routing game is defined by:

e Graph G(V,E).
e Source destination pairs (s1,t1), ..., (Sg, tr)-

e r; traffic from s; — ;.

Cost of path: ¢,(f) =,
Social Cost := > fpcp(f)

Remark: Equilibrium flow

exists and is unique!

e c.(.) > 0 cost function of edge e, continuous and non-decreasing.

e Flow is an equilibrium if all traffic is routed on cheapest paths.

Intro to AGT




Non-atomic selfish routing

A bad Example. Pigou network with large degree d.
clr)=1

Cost =~ € and PoA = % for d large.
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Non-atomic selfish routing

A bad Example. Pigou network with large degree d.
clr)=1

Cost =~ € and PoA = % for d large.

Questions:
1. When is PoA small (bounded)?
2. Can we find bounds on PoA for specific classes of cost functions?

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

Definition (Linear costs). Linear costs are of the form c.(x) = a, - x + b,.
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Definition (Linear costs). Linear costs are of the form c.(x) = a, - x + b,.

Theorem (Roughgarden-Tardos 00’, PoA for linear costs). For every
network with linear costs:

4
cost of Nash flow < 3 cost of optimal flow.
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Definition (Linear costs). Linear costs are of the form c.(x) = a, - x + b,.

Theorem (Roughgarden-Tardos 00’, PoA for linear costs). For every
network with linear costs:

4
cost of Nash flow < 3 cost of optimal flow.

Proof. Let f* be a Nash flow and f another flow. We first show (Variational

Inequality)
Z feee(fe) < Z Jece(f
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Definition (Linear costs). Linear costs are of the form c.(x) = a, - x + b,.

Theorem (Roughgarden-Tardos 00’, PoA for linear costs). For every
network with linear costs:

4
cost of Nash flow < 3 cost of optimal flow.

Proof. Let f* be a Nash flow and f another flow. We first show (Variational

Inequality)
Z feee(fe) < Z Jece(f

Observe that
f* equilibrium flow = if f7 > 0 then ¢,(f*) < ¢, (f*) for all paths p'.

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

Proof cont. Therefore all paths p so that f; > 0 have same cost say L.
Hence Zp f;cp(f*) — L - F where F = Zp f; is the total flow.
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Proof cont. Therefore all paths p so that f; > 0 have same cost say L.
Hence Zp f;cp(f*) — L - F where F = Zp f; is the total flow.

Since ¢, (f*) > L we conlude

Y foep(f)2 LY fo=L-F
p p
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Proof cont. Therefore all paths p so that f; > 0 have same cost say L.
Hence Zp f;cp(f*) — L - F where F = Zp f; is the total flow.

Since ¢, (f*) > L we conlude
prcp(f*) > Lpr:L'F
p p

Combining the above

N fece(f* prcp )>L-F = Zf cp(f) =) fie(f”)

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fecelfF) 2D freelf*)

Proof cont. We get that

Zf;ce(f*)SZfece ‘I_Zfe Ce _Ce f))

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We get that

sreir < e ) S

We also have that

e
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We get that

sreir < e ) S

We also have that

1 * *

o Case co(f*) < ce(f) trivially fe(ce(f*) —ce(f)) < gfEee(f*).
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We get that

sreir < e ) S

We also have that

1 * *

o Case co(f*) < ce(f) trivially fe(ce(f*) —ce(f)) < gfEee(f*).

o Case c.(f*) > ce(f) = fX > fe. Linear costs = LHS = a. f.(f> — f.) and
RHS > ta.fr2.

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We get that

sreir < e ) S

We also have that

1 * *

2
e Case c.(f*) < ¢{ Since zy — y? < asz — LHS < RHS. [.(/™).

e Case Ce(f*) Z CelJ T —7 Je = Je. TIIIcar COStGs —7 OIL0 — aefe(f: — fe) and
RHS > ta.fr2.

Intro to AGT



Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We conclude that

S frelf) <3 feeelF) 4 1 S Feer)

(2
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

D fece(fF) =) free(fr).

Proof cont. We conclude that

S el f) <3 el f) 4 1 S Frelr)

e c (&2

Or equivalently
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Price of Anarchy in Non-atomic selfish
routing with Linear costs

Proof cont.

Or equivalently

Theorem (Roughgarden 02’, PoA for polynomial costs). For every
network with polynomial costs with degree d:

d
logd

Intro to AGT

cost of Nash flow < © ( ) - cost of optimal flow.



Price of Anarchy in Non-atomic selfish
routing with Linear costs

Proof cont.

Or equivalently

Theorem (Roughgarden 02’, PoA for polynomial costs). For every
network with polynomial costs with degree d:

HW?2

d
logd

Intro to AGT

cost of Nash flow < © ( ) - cost of optimal fl




Price of Anarchy in Congestion Games

Theorem (Christodoulou-Koutsoupias, PoA for linear costs). For every
congestion game with linear costs:

5 .
cost of worst Nash < 5" cost of optimal welfare.
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Price of Anarchy in Congestion Games

Theorem (Christodoulou-Koutsoupias, PoA for linear costs). For every
congestion game with linear costs:

5 .
cost of worst Nash < 5 cost of optimal welfare.

Proof. Let [* be a Nash equilibrium in which ¢ uses path P; and asuume i
deviates to path P;. It holds (Variational Inequality)

Yol < D e+ Y clli+1)

ecP; eEPiﬂI—:’i 6615,,;\1:’%-
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Price of Anarchy in Congestion Games

Theorem (Christodoulou-Koutsoupias, PoA for linear costs). For every
congestion game with linear costs:

5 .
cost of worst Nash < 5 cost of optimal welfare.

Proof. Let [* be a Nash equilibrium in which ¢ uses path P; and asuume i
deviates to path P;. It holds (Variational Inequality)

Yol < D e+ Y clli+1)

ecP; eEPiﬂI—:’i 6615,,;\1:’%-

< Z S +1)+ Z ce(lX +1)

e€P;NP; e€P;\ P;
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Price of Anarchy in Congestion Games

Theorem (Christodoulou-Koutsoupias, PoA for linear costs). For every
congestion game with linear costs:

5 .
cost of worst Nash < 5 cost of optimal welfare.

Proof. Let [* be a Nash equilibrium in which ¢ uses path P; and asuume i
deviates to path P;. It holds (Variational Inequality)

doeel)< D> e+ D clli+1)

ecP; eEPiﬂPi 8615?3\133'
< Z (I +1)+ Z ce(lX + 1)
ecP;NP; e€P;\ P;

= Z ce(l; +1).

6615%‘
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Price of Anarchy in Congestion Games
D ce(l) <) cellr+1).

ecP; Bef)i

Proof cont. Consider any configuration [, where each agent j uses path IBj.
Summing for all agents ¢

che <chel*+1

] ecP; eEP
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Price of Anarchy in Congestion Games
D ce(l) <) cellr+1).

ecP; Bef)i

Proof cont. Consider any configuration [, where each agent j uses path IBj.
Summing for all agents ¢

che <chel*+1

] ecP; eEP

= Zlece(z; +1).

Intro to AGT



Price of Anarchy in Congestion Games
D ce(l) <) cellr+1).

ecP; Bepi

Proof cont. Consider any configuration [, where each agent j uses path IBj.
Summing for all agents ¢

POPORICES v oIS
[n] e€P; n| ec P;

= Zlece(z; +1).
— Zaefe(l;‘ +1) + bele.

Intro to AGT



Price of Anarchy in Congestion Games
D ce(l) <) cellr+1).

ecP; Bef)i

Proof cont. Consider any configuration [, where each agent j uses path IBj.
Summing for all agents ¢

5 1

Z Z ce(le) < | Since y(z+1) < —y* + =2 for naturals y, 2
] ec P, 1 3 3
HW?2
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Price of Anarchy in Congestion Games

che <Zae( 2 + l*2)+bJe

i€[n] e€P;

Proof cont. Observe that

ZZ%Z Zgaeig+zbl >Z a612+bl

eEP

Intro to AGT



Price of Anarchy in Congestion Games

DY el <Zae (— l*2)+bJe

i€[n] e€P;

Proof cont. Observe that
5 - b ~ b ~
e chel Zgaele+3bl>z “ael? + bl
zE eEP

Therefore

C (")

wlU(

_|_ Zael*z

Intro to AGT



Price of Anarchy in Congestion Games

DY el <Zae (— —l*2> + bel.

i€[n] e€P;

Proof cont. Observe that

5 7 5 79 5 ~ 5 o ~
3 Z Z ce(le) Z 3(1616 + gbele > Z gaele +b.l.
7/6 n] ecP; e
Therefore 5
* 2
C(l") g -I— Zael
<2c()+ Lo
-3 3
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Price of Anarchy in Congestion Games

Remark:
1. The above bound is tight!
2. For polynomial cost functions the PoA is exponential in d.

Intro to AGT



Price of Anarchy and Balls & Bins

Definition (Balls and Bins). Consider
e set of n balls and n bins {eq, ..., e, }.
® Each ball i chooses a bin j and pays the load of the bin j.
® Define social cost the maximum load.

o What is PoA? Is it 37

Intro to AGT



Price of Anarchy and Balls & Bins

Definition (Balls and Bins). Consider
e set of n balls and n bins {eq, ..., e, }.
e Each ball i chooses a bin j and pays the load of the bin j.

* Define social cost the maximum load.
Congestion game!

Ce, () = p

s () ()t

e What is PoA?

Ce, (L) =

Intro to AGT



Price of Anarchy and Balls & Bins

Theorem (Koutsoupias-Papadimitriou, PoA for balls & bins). The PoA is

Inn
(2 (hqlnn) '

Proof. We will use second moment method.

e Set every ball in a different bin. Hence optimal social cost is 1.

e Uniform (%, - %) is a Nash Equilibrium (symmetry).

Intro to AGT



Price of Anarchy and Balls & Bins

Theorem (Koutsoupias-Papadimitriou, PoA for balls & bins). The PoA is

Inn
(2 (h’lll’lﬂ) '

Proof. We will use second moment method.

e Set every ball in a different bin. Hence optimal social cost is 1.

e Uniform (% e %) is a Nash Equilibrium (symmetry).

?

e With high probability, we show that uniform gives max load ( In n ) ,

Inlnn
Inn )
Inlnn/°

which implies the expected max load is (2 (

Intro to AGT



Price of Anarchy and Balls & Bins

Theorem (Koutsoupias-Papadimitriou, PoA for balls & bins). The PoA is

Inn
(2 (h’lll’lﬂ) '

Proof. We will use second moment method.

e Set every ball in a different bin. Hence optimal social cost is 1.

e Uniform (%, e %) is a Nash Equilibrium (symmetry).

e With high probability, we show that uniform gives max load ( In n ) ,

Inlnn

which implies the expected max load is (2 ( In n ) :

Inlnn

Claim 1: Bin ¢ has at least k& < n balls with probability at least:

D (-0 2% ()" t =g

Intro to AGT



Price of Anarchy and Balls & Bins

Theorem (Koutsoupias-Papadimitriou, PoA for balls & bins). The PoA is

Inn
(Q (lnlnn) '

Proof. We will use second moment method.

e Set every L

In general (HW2):

e Uniform (

e With high (%)k S (7];1) S (%)k dQ(]rllril?n)’

Intro to AGT



Price of Anarchy and Balls & Bins

i, we have BF < (Inn)k = (Inn)swms = nt/3,

Proof cont. Choosing k =

Claim 1: Thus bin 4 has at least =2~ balls with probability at least en#l/g

3Inlnn

Intro to AGT



Price of Anarchy and Balls & Bins

Inn
3lnlnn

we have k¥ < (Inn)* = (In n)sllélﬁ?in — nl/3

Proof cont. Choosing k =

Claim 1: Thus bin ¢ has at least 3111?1’; balls with probability at least - 1 —i75 -

Let X; be the indicator that bin ¢ has at least 57 5 balls and X be the expected
number of all bins with at least 5 lnn balls

Intro to AGT



Price of Anarchy and Balls & Bins

Inn
3lnlnn

we have k¥ < (Inn)* = (In n)sﬂ?ﬁ — nl/3

Proof cont. Choosing k =

Claim 1: Thus bin ¢ has at least 3111?1’; balls with probability at least - 1 —i75 -

Let X; be the indicator that bin ¢ has at least 57 5 balls and X be the expected
number of all bins with at least 3 lnn balls

X=) X;=EX]=) E[X

Intro to AGT



Price of Anarchy and Balls & Bins

Inn 1/3

Inn_ we have k* < (Inn)* = (Inn)smmn =n

3lnlnn

Proof cont. Choosing k =

Claim 1: Thus bin ¢ has at least 3111?1’; balls with probability at least - 1 —i75 -

Let X; be the indicator that bin ¢ has at least 57 5 balls and X be the expected
number of all bins with at least 5 lnn balls

X=) X;=EX]=) E[X

Observe that E[X] > %ﬁg > 1 but this does not imply X > 1 with high

probability. We need to argue about the variance (second moment).

Intro to AGT



Price of Anarchy and Balls & Bins

Inn 1/3

Inn_ we have k* < (Inn)* = (Inn)smmn =n

3lnlnn

Proof cont. Choosing k =

Claim 1: Thus bin ¢ has at least 3111?1’; balls with probability at least - 1 —i75 -

Let X; be the indicator that bin ¢ has at least 57 5 balls and X be the expected
number of all bins with at least 5 lnn balls

X=) X;=EX]=) E[X

Observe that E[X] > %ﬁg > 1 but this does not imply X > 1 with high

probability. We need to argue about the variance (second moment).

Chebyshev’s inequality gives Pr[|X — E|X]|| > tE[X]] < t‘gg;[g{]]’
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Price of Anarchy and Balls & Bins

Inn 1/3

Inn_ we have k* < (Inn)* = (Inn)smmn =n

3lnlnn

Proof cont. Choosing k =

Claim 1: Thus bin 7 has at least 1“” balls with probability at least - 1 —i73 -

Let X; be the indicator that bin ¢ has at least 57 5 balls and X be the expected
number of all bins with at least 5 lnn balls

X=) X;=EX]=) E[X

Observe that E[X] > %ﬁg > 1 but this does not imply X > 1 with high

probability. We need to argue about the variance (second moment).

Chebyshev’s inequality gives Pr[|X — E|X]|| > tE[X]] < t‘gg;[g{]]’

thus Pr(X = 0] < Pr(|X — E[X]| > B[X]] < Za

Intro to AGT



Price of Anarchy and Balls & Bins

Proof cont.|Pr[X = 0] < YarlXl

From negative correlation we have that Var|X| <> . Var[X;].

Morever Var[X,] = E[X?] — E?[X,] < E[X?] = E[X;] < 1
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Price of Anarchy and Balls & Bins

Proof cont.|Pr[X = 0] < YarlXl

From negative correlation we have that Var|X| <> . Var[X;].

Morever Var[X,] = E[X?] — E?[X,] < E[X?] = E[X;] < 1

We conclude that
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Price of Anarchy and Balls & Bins

Proof cont.|Pr[X = 0] < YarlXl

From negative correlation we have that Var|X| <> . Var[X;].

Morever Var[X,] = E[X?] — E?[X,] < E[X?] = E[X;] < 1

We conclude that

Therefore

n—1/3

PriX>1=1-Pr[X=0>1- 25— = 1.

Intro to AGT



Congestion Games

A congestion game is defined by:

e n set of players.

o [ set of edges/facilities/ bins.

e S; C 2% the set of strategies of player i.

e c.:{1,....n} — R cost function of edge e.

For any s = (s1, ..., Sn)
e [.(s) number of players (load) that use edge e.

® ci(5) =) ., Cel(le) the cost function of player .

Intro to AGT



Congestion Games

For this game:

n = {1,2} (red, green)

E are the edges of the network.
S; is all s — t paths.

ce on edges.

Remark: Defined by Rosenthal in 1973. Capture atomic routing games!

Intro to AGT



