L13 Stochastic Games
(Markov Decision Processes).

CS 280 Algorithmic Game Theory

loannis Panageas

Multi-agent systems and RL

Decentralized systems

Individual interests (rational agents, cooperation/competition etc)

Distributed optimization

Self-driving cars Auctions Robotics

Multi-agent systems and RL

Decentralized systems

Individual interests (rational agents, cooperation/competition etc)

Distributed optimization

Self-driving cars Auctions

How these systems evolve? Predictions?

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

n number of players

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

n number of players

Environmentis at states € S

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

‘ Chooses action a; € 4,

‘ Chooses action a, € A4,

]

(*]
]

‘ Chooses action a,, € A,

n number of players

Environmentis at states € S

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

' Gets reward 11 (s, a4, ..., a,) € [—1,1]

- s’ ~ P(s,aq,...,ay)
O Getsrewardry(s,ay, ..., an) € [-1,1]

‘ Gets reward 1, (s, a4, ..., ay) € [—1,1]

n number of players

Environment jumps at state s’ € S

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

- Gets value V;(s°) == Yt r (st af, ..., ab)

‘ Gets value V,(s°) == Y 1y (sh, al, ..., ab)

@
- Gets value V,(s°) == X o7, (st df, ..., ab)

n number of players

Markov Games

Markov games or stochastic games are established as a framework for multi-agent
reinforcement learning [Littman, 1994].

- Gets value V;(s°) == Yt (st, af, ..., ab)

‘ Gets value V,(s°) == Y 1y (sh, al, ..., ab)

If His oo, then we introduce a discount y

e.g. Vi (s0) = $20ytri (st b, ..., ab)

[~
[~
- Gets value Vn(so) = Y (st al, ...,ab)

n number of players

An example
a) ®ag =0 ay ®ag =0

. otherwise .
0 1 0 1

otherwise

0/20 2,0 00,2 0,2
12,0 2,0 10,2 0,2

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]

— N, a finite set of agents with n := [N/,

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]

— N, a finite set of agents with n := [N/,

— &, a finite state space,

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]

— N, a finite set of agents with n := [N/,
— &, a finite state space,

— Ay, a finite action space each player k, and A = x7'_; Ay

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]
— N, a finite set of agents with n := [N/,
— &, a finite state space,
— Ay, a finite action space each player k, and A = x7'_; Ay

—rp: S x A—[—1,1], a reward function for each agent £k,

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]
— N, a finite set of agents with n := [N/,
— &, a finite state space,
— Ay, a finite action space each player k, and A = x7'_; Ay
—rp: S x A—[—1,1], a reward function for each agent £k,

— P:S x A— S a transition probability function,

n-player Markov game: Formal definition

Markov games or stochastic games are established as a framework for multi-
agent reinforcement learning [Littman, 1994]
— N, a finite set of agents with n := [N/,
— &, a finite state space,
— Ay, a finite action space each player k, and A = x7'_; Ay
—rp: S x A—[—1,1], a reward function for each agent £k,
— P:S x A— S a transition probability function,
— v €[0,1), a discount factor,

— p € A(S), an initial state distribution.

* Single agent RL

The framework

A finite Markov Decision Process (MDP) is defined as follows:
— A finite state space S.
— A finite action space A.

— A transition model P where P(s’|s,a) is the probability of transitioning
into state s’ upon taking action a in state s. [P is a matrix of size (S-A)x S.

— Reward function r : § x A — [—1,1].
— A discounted factor v € [0,1).

— p € A(S), an initial state distribution.

Definitions

Definition (Markovian stationary policy). Policy is called a function

m:S — A.

Definition (Value function). Given a policy 7t the value function is given by

V(p) =Exp |} 7v'7r(st,ar)|so ~ p
t=0

The goal is to solve

Definitions

Definition (Markovian stationary policy). Policy is called a function

m:S — A.

Definition (Value function). Given a policy 7t the value function is given by

V(p) =Exp |} 7v'7r(st,ar)|so ~ p
t=0

The goal is to solve
max V™ (p).

™

Remarks
 The max operator is over all (possibly non-stationary and randomized) policies.

* |t suffices to focus on deterministic.
e V isnotconcave in 1.

Example

Example (Navigation). Suppose you are given a grid map. The state of the agent
is their current location. The four actions might be moving 1 step along each of east,
west, north or south. The transitions in the simplest setting are deterministic. There
is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero
otherwise.

0.590 0.656 0.729 0.81

Remark
e Whatisl/?
* Whatis yin the example?

Bellman operator

Definition (Bellman Operator). Let’s define the following operator T :
T W(s) = me%{r(s, a) +v Y P(s'|s,a)W(s")}
ac g/

Set V*(s) := max V™ (s).

T

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Bellman operator

Definition (Bellman Operator). Let’s define the following operator T :
T W(s) = me%{r(s, a) +v Y P(s'|s,a)W(s")}
ac g/

Set V*(s) := max V™ (s).

T

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Proof. Easy to see V* is a fixed point. We will show that 7 is contracting
(Banach Fixed point Theorem).

Bellman operator

Definition (Bellman Operator). Let’s define the following operator T :
T W(s) = me%{r(s, a) +v Y P(s'|s,a)W(s")}
ac g/

Set V*(s) := max V™ (s).

T

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Proof. Easy to see V* is a fixed point. We will show that 7 is contracting
(Banach Fixed point Theorem).

s’ s’

| TV -TV, = ngx{r(s,a) +) P(s'|a,s)V(s')} — n’y’;«lx{r(S,a') +9) P(s'|d,s)V'(s")}

C

Bellman operator

Definition (Bellman Operator). Let’s define the following operator T :

T W(s) = Igleegl({r(s,a) + ')/Z’{IP(S’|s,a)W(s’)}

Set V*(s) := max V™ (s).

T

Claim (Bellman Operator). V* is the unique fixed point of the operator.

Proof. Easy to see V* is a fixed point. We will show that 7 is contracting
(Banach Fixed point Theorem).

| TV -TV, = ‘max{r(s a) +) P(s'|a,s)V(s")} — max{r(sa +9) P(s'|d,s)V'(s")}

s’ s’

C

IA

max{r(s a —I—’YZIP (s'|a,s)V(s") — ’YEIP "la,s)V'(s")}

o.@)

Bellman operator

”x_y”oo > |||x||oo_||y||oo|

|7V -TV|, = max{r(s a) + Y _P(s'|a,s)V(s')} — max{r(s a')+) P(s'|a’,s)V'(s')}

s’ s’

0

IA

max{r(s a) +v Y P(s'|a,s)V(s') —r(s,a) — fyZ]P(s a,s)V'(s")}

S,

cO

Bellman operator

|7V -TV, = maax{r(s,a) + T:P(s’|a,s)V(s’)} — n’y’;«lx{r(S,a') + 72P(s’|a’,s)V’(s’)}

0

IA

mg,\x{r(s,a) + Y P(s'a,s)V(s") —r(s,a) — ’YZ’]P(SIIQIS)V’(S,)}

S,

cO

- mgatrv - v

Bellman operator

[[AX]leo < ||A]]oo||X]] oo

|7V -TV|, = max{r(s a) + Y _P(s'|a,s)V(s')} — max{r(s a')+) P(s'|a’,s)V'(s')}
< max{r(s a) +Y P(s|a,s)V(s') —r(s,a) fyZ]P(s a,s)V'(s")}
= maax{]Pa(V— V’)}Hoo
<7vl|v-V. since ||P4||,, = 1.
Remarks

* Bellman operator is contracting for infinity norm.
* Applying the operator does not give a polynomial time algorithm. Why?
* Linear programming can give optimal policies in polynomial time.

Value Iteration

ldea: We build a sequence of value functions. Let V, be any vector, then iterate the application
of the optimal Bellman operator so that given V,, at iteration k we compute

Vi = T

Optimization for Machine Learning

Value Iteration

ldea: We build a sequence of value functions. Let V, be any vector, then iterate the application
of the optimal Bellman operator so that given V,, at iteration k we compute

Vi = T

The policy will be given at every iteration as

7 = argmax(1 — y)r(s,a) + Y _P(s'|s,a) Vi(s')
a o/

After k = 198(1/€) va have error €.
log(1/7)

Optimization for Machine Learning

Policy Iteration

Idea: We build a sequence of policies. Let Ty be any stationary policy. At each iteration k
we perform the two following steps:

1. Policy evaluation given m., compute V7,

2. Policy improvement: we compute the greedy policy 71 from V7™ as:
Trt1(2) € argmax [r(x,a) + 7 Zp(y\.r, a)V™(y)].

acA
y

I'he iterations continue until V™ = VV7k+1,

Optimization for Machine Learning

* Markov games: Solution concepts

Solution Concept: Nash equilibrium

* Every agent k picks a policy my, : 4 possibilities

Markovian and stationary.
Markovian and non-stationary.
Non-Markovian and stationary.
Non-Markovian and non-stationary.

PWNRE

Solution Concept: Nash equilibrium

* Every agent k picks a policy my, : 4 possibilities

Markovian and stationary.
Markovian and non-stationary.
Non-Markovian and stationary.
Non-Markovian and non-stationary.

PWNRE

* The goal of each agent is to maximize their own value.

Solution Concept: Nash equilibrium

* Every agent k picks a policy my.
* The goal of each agent is to maximize their own value.

An e-approximate Nash equilibrium (NE) n* = (xw,...,m}) means that no agent
can unilaterally increase their expected value more than e,

Vi (p) = VT (p) — €, Yk € N, V.

Solution Concept: Nash equilibrium

* Every agent k picks a policy my.
* The goal of each agent is to maximize their own value.

An e-approximate Nash equilibrium (NE) n* = (xw,...,m}) means that no agent
can unilaterally increase their expected value more than e,

Vi (p) = VT (p) — €, Yk € N, V.

Remarks
* Agents do not share randomness.

Solution Concept: Nash equilibrium

* Every agent k picks a policy my.
* The goal of each agent is to maximize their own value.

An e-approximate Nash equilibrium (NE) n* = (xw,...,m}) means that no agent
can unilaterally increase their expected value more than e,

Ve (p) = VTR (p) — €, Wk € N, V)

Remarks

* Agents do not share randomness.

* Fixing all agents but i, induces a classic MDP. Every agent aims at
(approximate) best response.

Solution Concept: Nash equilibrium

* Every agent k picks a policy my.
* The goal of each agent is to maximize their own value.

An e-approximate Nash equilibrium (NE) n* = (xw,...,m}) means that no agent
can unilaterally increase their expected value more than e,

Ve (p) = VTR (p) — €, Wk € N, V)

Remarks

* Agents do not share randomness.

* Fixing all agents but i, induces a classic MDP. Every agent aims at
(approximate) best response.

* Generalizes notion of Nash Equilibrium.

* Nash policies always exist (Fink 64).

The bad news

* Markov games generalize normal form games.

‘ Inherit computational intractability

The bad news

* Markov games generalize normal form games.

‘ Inherit computational intractability

Daskalakis, Goldberg, Papadimitriou 06]
Chen, Deng 06]
Rubinstein 15] PPAD-hard

The bad news

* Markov games generalize normal form games.

- Inherit computational intractability

Daskalakis, Goldberg, Papadimitriou 06]
Chen, Deng 06]
Rubinstein 15] PPAD-hard

Specific classes of games?

 Two-player zero sum
Markov games

2-player zero-sum Markov games
- N ={1,2},ie,n=2,
- ./4, B, the ﬁnite action space Of players 1, 2 respectively.
- Tro = —T,

— rest the same.

Conventions

* We call player 2 the maximizer and player 1 the minimizer.
* The value of maximizer is V ™172)(p).

2-player zero-sum Markov games
- N ={1,2},ie,n=2,
— A, B, the finite action space of players 1, 2 respectively.
- T2 = —Ty,

— rest the same.

Conventions

* We call player 2 the maximizer and player 1 the minimizer.
* The value of maximizer is V ™172)(p).

/\/b
N
0 1 -1 L
state sg = —1 0 1 stateslz(_l 1)
1 -1 0
V_J

=

2-player zero-sum Markov games

A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game

: 0,72 — : 0,72
minmax V™"2(p) = max min V172(p)

2-player zero-sum Markov games

A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game

: 0,72 — : 7T],72
minmax V™"2(p) = max min V172(p)

Remark

 The game has a unique value V™ (recall Von Neumann for normal
form two player zero-sum games).

The theorem implies it does not matter who plays first.

The function is not convex-concave!

The proof of Shapley uses a contraction argument.

The complexity of finding a Nash equilibrium is unknown.

2-player zero-sum Markov games

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of
the corresponding zero-sum game.

-1,1 B
e.g., Val(L’_J) = 0.

2-player zero-sum Markov games

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of
the corresponding zero-sum game.

Given a value vector V(s), we define the operator 7

TV(s) :=val(r(s,.,.) + f)/z,]P(s’|s, L)V ().

2-player zero-sum Markov games

|7V —TV|_ = |[val{r(s,.,.) + ’yZIIP(s’|s, L)V(sH) Yy —val{r(s,.,.) + ’)/ZIIP(S,|S, L)V}

VAN

rr;’%x{r(s, a,b) +vY P(s'|s,a,b)V(s') —r(s,a,b) — v Y P(s'|s,a,b)V'(s')}

s! s!

— 7 [max(Puu(v - V1)
a, 0o

<rv-Vi

2-player zero-sum Markov games

|7V —TV|_ = |[val{r(s,.,.) + ’yZIIP(s’|s, L)V(sH) Yy —val{r(s,.,.) + ’)/ZIIP(S,|S, L)V}

VAN

rr;’%x{r(s, a,b) +vY P(s'|s,a,b)V(s') —r(s,a,b) — v Y P(s'|s,a,b)V'(s')}

s! s!

— 7 [max(Puu(v - V1)
a, 0o

<rv-Vi

Remarks
* Bellman operator is contracting for infinity norm.
* Applying the operator does not give a polynomial time algorithm. Why?

Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

nk(a | S) — Xk,5,a

with xgs, > 0and } ,ca, Xksa = 1.

Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

(A | S) = Xk s a

with xgs, > 0and } ,ca, Xksa = 1.

Definition (Policy Gradient Ascent). PGA is defined iteratively:

(t)
x;EtH) = HA(Ak)S(x}(ct) + vakaXt (0),

where I1 denotes projection on product of simplices.

Some facts about Policy Gradient

Definition (Policy Gradient Ascent). PGA is defined iteratively:
(t+1) . x(t)
Xp = Iy aps () + 7V VE (o),

where I1 denotes projection on product of simplices.

Theorem (Policy Gradient Ascent [Agarwal et al 2020]). It can be shown for one
agent that after O(1/€?) iterations, an e-optimal policy can be reached.

Theorem (Policy Gradient Descent/Ascent [Daskalakis et al 2020]). It can be
shown a two-time scale Policy Gradient Descent/Ascent can give an e-Nash equilib-

rium in poly(1/€) time.

Remarks

* No guarantees for more than two players (only very specific settings).

e Can we find other classes of Markov games that PGA converges?

* |In general, approximating even stationary CCE is PPAD-complete [Daskalakis et al 2022].

	Slide 1: L14 Stochastic Games (Markov Decision Processes).
	Slide 2: Multi-agent systems and RL
	Slide 3: Multi-agent systems and RL
	Slide 4: Markov Games
	Slide 5: Markov Games
	Slide 6: Markov Games
	Slide 7: Markov Games
	Slide 8: Markov Games
	Slide 9: Markov Games
	Slide 10: An example
	Slide 11: n-player Markov game: Formal definition
	Slide 12: n-player Markov game: Formal definition
	Slide 13: n-player Markov game: Formal definition
	Slide 14: n-player Markov game: Formal definition
	Slide 15: n-player Markov game: Formal definition
	Slide 16: n-player Markov game: Formal definition
	Slide 17: Single agent RL
	Slide 18: The framework
	Slide 19: Definitions
	Slide 20: Definitions
	Slide 21: Example
	Slide 22: Bellman operator
	Slide 23: Bellman operator
	Slide 24: Bellman operator
	Slide 25: Bellman operator
	Slide 26: Bellman operator
	Slide 27: Bellman operator
	Slide 28: Bellman operator
	Slide 29: Value Iteration
	Slide 30: Value Iteration
	Slide 31: Policy Iteration
	Slide 32: Markov games: Solution concepts
	Slide 33: Solution Concept: Nash equilibrium
	Slide 34: Solution Concept: Nash equilibrium
	Slide 35: Solution Concept: Nash equilibrium
	Slide 36: Solution Concept: Nash equilibrium
	Slide 37: Solution Concept: Nash equilibrium
	Slide 38: Solution Concept: Nash equilibrium
	Slide 39: The bad news
	Slide 40: The bad news
	Slide 41: The bad news
	Slide 42: Two-player zero sum Markov games
	Slide 43: 2-player zero-sum Markov games
	Slide 44: 2-player zero-sum Markov games
	Slide 45: 2-player zero-sum Markov games
	Slide 46: 2-player zero-sum Markov games
	Slide 47: 2-player zero-sum Markov games
	Slide 48: 2-player zero-sum Markov games
	Slide 49: 2-player zero-sum Markov games
	Slide 50: 2-player zero-sum Markov games
	Slide 51: Policy Gradient Iteration
	Slide 52: Policy Gradient Iteration
	Slide 53: Some facts about Policy Gradient

