L13 Stochastic Games (Markov Decision Processes).

CS 280 Algorithmic Game Theory Ioannis Panageas

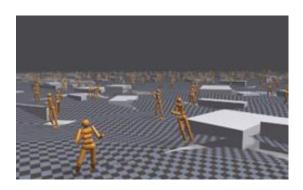
Multi-agent systems and RL

Decentralized systems

Individual interests (rational agents, cooperation/competition etc)

Distributed optimization

Auctions



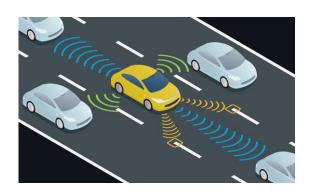
Robotics

Multi-agent systems and RL

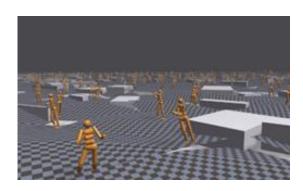
Decentralized systems

Individual interests (rational agents, cooperation/competition etc)

Distributed optimization



Auctions



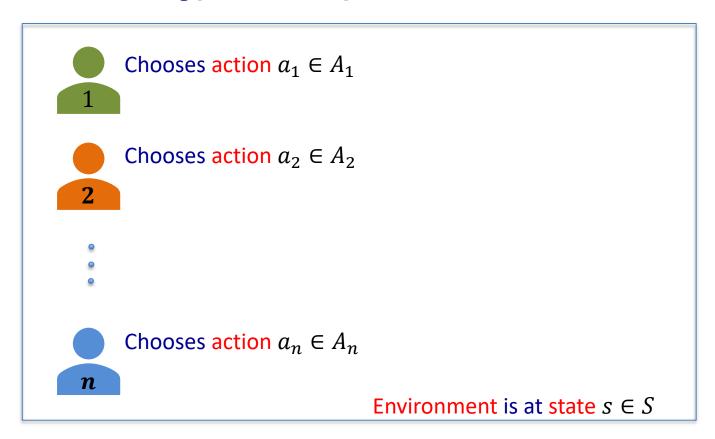
Robotics

How these systems evolve? Predictions?

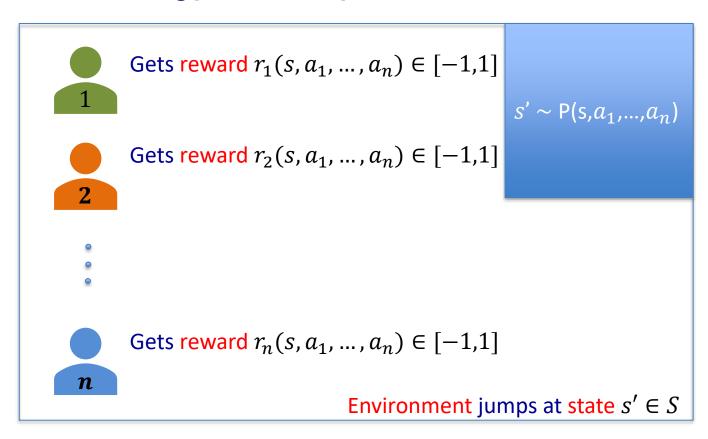
Markov games or *stochastic* games are established as a framework for multi-agent reinforcement learning [Littman, 1994].

Markov games or *stochastic* games are established as a framework for multi-agent reinforcement learning [Littman, 1994].

Markov games or *stochastic* games are established as a framework for multi-agent reinforcement learning [Littman, 1994].



Markov games or *stochastic* games are established as a framework for multi-agent reinforcement learning [Littman, 1994].



Gets value
$$V_1(s^0) := \sum_{t=0}^H r_1(s^t, a_1^t, ..., a_n^t)$$

Gets value
$$V_2(s^0) := \sum_{t=0}^H r_2(s^t, a_1^t, ..., a_n^t)$$

Gets value
$$V_n(s^0) := \sum_{t=0}^H r_n(s^t, a_1^t, ..., a_n^t)$$

Markov games or *stochastic* games are established as a framework for multi-agent reinforcement learning [Littman, 1994].

Gets value
$$V_1(s^0) := \sum_{t=0}^H r_1(s^t, a_1^t, ..., a_n^t)$$

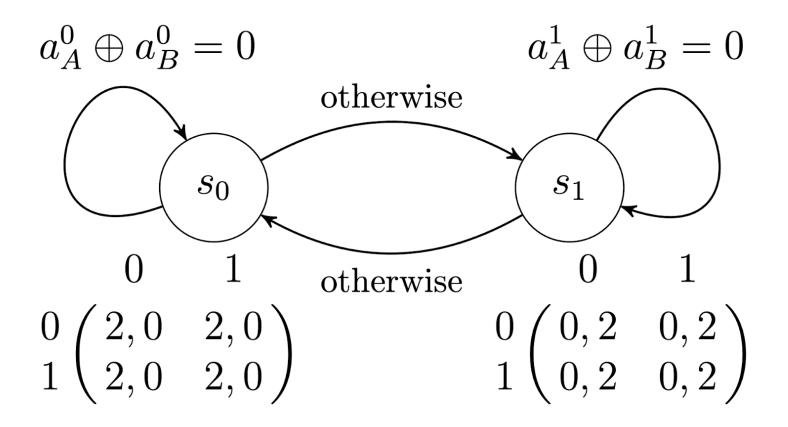
Gets value
$$V_2(s^0) := \sum_{t=0}^H r_2(s^t, a_1^t, ..., a_n^t)$$

If H is ∞ , then we introduce a discount γ

e.g.,
$$V_1(s^0)\coloneqq\sum_{t=0}^\infty\gamma^tr_1(s^t,a_1^t,\dots,a_n^t)$$

Gets value
$$V_n(s^0) := \sum_{t=0}^H r_n(s^t, a_1^t, ..., a_n^t)$$

An example



Markov games or stochastic games are established as a framework for multiagent reinforcement learning [Littman, 1994]

 $-\mathcal{N}$, a finite set of agents with $n := |\mathcal{N}|$,

- $-\mathcal{N}$, a finite set of agents with $n := |\mathcal{N}|$,
- $-\mathcal{S}$, a finite state space,

- \mathcal{N} , a finite set of agents with $n := |\mathcal{N}|$,
- $-\mathcal{S}$, a finite state space,
- \mathcal{A}_k , a finite action space each player k, and $\mathcal{A} = \times_{k=1}^n \mathcal{A}_k$

- $-\mathcal{N}$, a finite set of agents with $n := |\mathcal{N}|$,
- $-\mathcal{S}$, a finite state space,
- \mathcal{A}_k , a finite action space each player k, and $\mathcal{A} = \times_{k=1}^n \mathcal{A}_k$
- $-r_k: \mathcal{S} \times \mathcal{A} \to [-1,1]$, a reward function for each agent k,

- $-\mathcal{N}$, a finite set of agents with $n := |\mathcal{N}|$,
- $-\mathcal{S}$, a finite state space,
- \mathcal{A}_k , a finite action space each player k, and $\mathcal{A} = \times_{k=1}^n \mathcal{A}_k$
- $-r_k: \mathcal{S} \times \mathcal{A} \to [-1, 1]$, a reward function for each agent k,
- $-\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ a transition probability function,

- $-\mathcal{N}$, a finite set of agents with $n := |\mathcal{N}|$,
- $-\mathcal{S}$, a finite state space,
- \mathcal{A}_k , a finite action space each player k, and $\mathcal{A} = \times_{k=1}^n \mathcal{A}_k$
- $-r_k: \mathcal{S} \times \mathcal{A} \to [-1,1]$, a reward function for each agent k,
- $-\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ a transition probability function,
- $-\gamma \in [0,1)$, a discount factor,
- $\rho \in \Delta(S)$, an initial state distribution.

Single agent RL

The framework

A finite Markov Decision Process (MDP) is defined as follows:

- A finite state space S.
- A finite action space \mathcal{A} .
- A transition model \mathbb{P} where $\mathbb{P}(s'|s,a)$ is the probability of transitioning into state s' upon taking action a in state s. \mathbb{P} is a matrix of size $(S \cdot A) \times S$.
- Reward function $r: \mathcal{S} \times \mathcal{A} \to [-1, 1]$.
- A discounted factor $\gamma \in [0, 1)$.
- $\rho \in \Delta(S)$, an initial state distribution.

Definitions

Definition (Markovian stationary policy). Policy is called a function

$$\pi: \mathcal{S} \to \mathcal{A}$$
.

Definition (Value function). Given a policy π the value function is given by

$$V^{\pi}(\boldsymbol{\rho}) = \mathbb{E}_{\pi,\mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 \sim \boldsymbol{\rho}\right]$$

The goal is to solve

$$\max_{\pi} V^{\pi}(\boldsymbol{\rho}).$$

Definitions

Definition (Markovian stationary policy). Policy is called a function

$$\pi: \mathcal{S} \to \mathcal{A}$$
.

Definition (Value function). Given a policy π the value function is given by

$$V^{\pi}(\boldsymbol{\rho}) = \mathbb{E}_{\pi,\mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} \sim \boldsymbol{\rho}\right]$$

The goal is to solve

$$\max_{\pi} V^{\pi}(\boldsymbol{\rho}).$$

Remarks

- The max operator is over all (possibly non-stationary and randomized) policies.
- It suffices to focus on deterministic.
- V is not concave in π .

Example

Example (Navigation). Suppose you are given a grid map. The state of the agent is their current location. The four actions might be moving 1 step along each of east, west, north or south. The transitions in the simplest setting are deterministic. There is a goal g that is trying to reach. Reward is one if the agent reaches the goal and zero otherwise.

0.729	0.81	0.9	*
0.656		0.81	0.9
0.590	0.656	0.729	0.81

→	-	<u></u>	☆
1		1	1
1	-	1	1

Remark

- What is *V*?
- What is γ in the example?

Definition (Bellman Operator). Let's define the following operator \mathcal{T} :

$$\mathcal{T} W(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|s, a) W(s') \}$$

Set
$$V^*(s) := \max_{\pi} V^{\pi}(s)$$
.

Claim (Bellman Operator). V^* is the unique fixed point of the operator.

Definition (Bellman Operator). Let's define the following operator \mathcal{T} :

$$\mathcal{T} W(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|s, a) W(s') \}$$

Set
$$V^*(s) := \max_{\pi} V^{\pi}(s)$$
.

Claim (Bellman Operator). V^* is the unique fixed point of the operator.

Proof. Easy to see V^* is a fixed point. We will show that \mathcal{T} is contracting! (Banach Fixed point Theorem).

Definition (Bellman Operator). Let's define the following operator \mathcal{T} :

$$\mathcal{T} W(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|s, a) W(s') \}$$

Set
$$V^*(s) := \max_{\pi} V^{\pi}(s)$$
.

Claim (Bellman Operator). V^* is the unique fixed point of the operator.

Proof. Easy to see V^* is a fixed point. We will show that \mathcal{T} is contracting! (Banach Fixed point Theorem).

$$\|\mathcal{T}V - \mathcal{T}V'\|_{\infty} = \left\| \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|a, s)V(s')\} - \max_{a'} \{r(s, a') + \gamma \sum_{s'} \mathbb{P}(s'|a', s)V'(s')\} \right\|_{C}$$

Definition (Bellman Operator). Let's define the following operator \mathcal{T} :

$$\mathcal{T} W(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|s, a) W(s') \}$$

Set
$$V^*(s) := \max_{\pi} V^{\pi}(s)$$
.

Claim (Bellman Operator). V^* is the unique fixed point of the operator.

Proof. Easy to see V^* is a fixed point. We will show that \mathcal{T} is contracting! (Banach Fixed point Theorem).

$$\|\mathcal{T}V - \mathcal{T}V'\|_{\infty} = \left\| \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|a, s)V(s')\} - \max_{a'} \{r(s, a') + \gamma \sum_{s'} \mathbb{P}(s'|a', s)V'(s')\} \right\|_{\infty}$$

$$\leq \left\| \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|a, s)V(s') - r(s, a) - \gamma \sum_{s'} \mathbb{P}(s'|a, s)V'(s')\} \right\|_{\infty}$$

$||x - y||_{\infty} \ge |||x||_{\infty} - ||y||_{\infty}|$

$$\|\mathcal{T}V - \mathcal{T}V'\|_{\infty} = \left\| \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|a, s)V(s')\} - \max_{a'} \{r(s, a') + \gamma \sum_{s'} \mathbb{P}(s'|a', s)V'(s')\} \right\|_{\infty}$$

$$\leq \left\| \max_{a} \{r(s, a) + \gamma \sum_{s'} \mathbb{P}(s'|a, s)V(s') - r(s, a) - \gamma \sum_{s'} \mathbb{P}(s'|a, s)V'(s')\} \right\|_{\infty}$$

$$\begin{split} \left\| \mathcal{T}V - \mathcal{T}V' \right\|_{\infty} &= \left\| \max_{a} \{ r(s,a) + \gamma \sum_{s'} \mathbb{P}(s'|a,s)V(s') \} - \max_{a'} \{ r(s,a') + \gamma \sum_{s'} \mathbb{P}(s'|a',s)V'(s') \} \right\|_{\infty} \\ &\leq \left\| \max_{a} \{ r(s,a) + \gamma \sum_{s'} \mathbb{P}(s'|a,s)V(s') - r(s,a) - \gamma \sum_{s'} \mathbb{P}(s'|a,s)V'(s') \} \right\|_{\infty} \\ &= \gamma \left\| \max_{a} \{ \mathbb{P}_{a}(V - V') \} \right\|_{\infty} \end{split}$$

$||Ax||_{\infty} \leq ||A||_{\infty}||x||_{\infty}$

$$\begin{split} \|\mathcal{T}V - \mathcal{T}V'\|_{\infty} &= \left\| \max_{a} \{r(s,a) + \gamma \sum_{s'} \mathbb{P}(s'|a,s)V(s')\} - \max_{a'} \{r(s,a') + \gamma \sum_{s'} \mathbb{P}(s'|a',s)V'(s')\} \right\|_{\infty} \\ &\leq \left\| \max_{a} \{r(s,a) + \gamma \sum_{s'} \mathbb{P}(s'|a,s)V(s') - r(s,a) - \gamma \sum_{s'} \mathbb{P}(s'|a,s)V'(s')\} \right\|_{\infty} \\ &= \gamma \left\| \max_{a} \{\mathbb{P}_{a}(V - V')\} \right\|_{\infty} \\ &\leq \gamma \left\| V - V' \right\|_{\infty} \qquad \text{since } \|\mathbb{P}_{a}\|_{\infty} = 1. \end{split}$$

Remarks

- Bellman operator is contracting for infinity norm.
- Applying the operator does not give a polynomial time algorithm. Why?
- Linear programming can give optimal policies in polynomial time.

Value Iteration

Idea: We build a sequence of value functions. Let V_0 be any vector, then iterate the application of the optimal Bellman operator so that given V_k at iteration k we compute

$$V_{k+1} = TV_k$$
.

Value Iteration

Idea: We build a sequence of value functions. Let V_0 be any vector, then iterate the application of the optimal Bellman operator so that given V_k at iteration k we compute

$$V_{k+1} = TV_k$$
.

The policy will be given at every iteration as

$$\pi_k = \arg\max_{a} (1 - \gamma) r(s, a) + \gamma \sum_{s'} P(s'|s, a) V_k(s')$$

After
$$k = \frac{\log(1/\epsilon)}{\log(1/\gamma)}$$
 we have error ϵ .

Policy Iteration

Idea: We build a sequence of policies. Let π_0 be any stationary policy. At each iteration k we perform the two following steps:

- 1. Policy evaluation given π_k , compute V^{π_k} .
- 2. Policy improvement: we compute the greedy policy π_{k+1} from V^{π_k} as:

$$\pi_{k+1}(x) \in \arg\max_{a \in A} \left[r(x,a) + \gamma \sum_{y} p(y|x,a) V^{\pi_k}(y) \right].$$

The iterations continue until $V^{\pi_k} = V^{\pi_{k+1}}$.

Markov games: Solution concepts

- Every agent k picks a policy π_k : 4 possibilities
- 1. Markovian and stationary.
- Markovian and non-stationary.
- **3.** Non-Markovian and stationary.
- 4. Non-Markovian and non-stationary.

- Every agent k picks a policy π_k : 4 possibilities
- 1. Markovian and stationary.
- **2.** Markovian and **non**-stationary.
- **3.** Non-Markovian and stationary.
- 4. Non-Markovian and non-stationary.
- The goal of each agent is to maximize their own value.

- Every agent k picks a policy π_k .
- The goal of each agent is to maximize their own value.

An ϵ -approximate Nash equilibrium (NE) $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ means that no agent can unilaterally increase their expected value more than ϵ ,

$$V_k^{\pi^*}(\boldsymbol{\rho}) \ge V_k^{(\pi'_k, \pi^*_{-k})}(\boldsymbol{\rho}) - \epsilon, \ \forall k \in \mathcal{N}, \forall \pi'_k.$$

- Every agent k picks a policy π_k .
- The goal of each agent is to maximize their own value.

An ϵ -approximate Nash equilibrium (NE) $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ means that no agent can unilaterally increase their expected value more than ϵ ,

$$V_k^{\pi^*}(\boldsymbol{\rho}) \ge V_k^{(\pi'_k, \pi^*_{-k})}(\boldsymbol{\rho}) - \epsilon, \ \forall k \in \mathcal{N}, \forall \pi'_k.$$

Remarks

Agents do not share randomness.

Solution Concept: Nash equilibrium

- Every agent k picks a policy π_k .
- The goal of each agent is to maximize their own value.

An ϵ -approximate Nash equilibrium (NE) $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ means that no agent can unilaterally increase their expected value more than ϵ ,

$$V_k^{\pi^*}(\boldsymbol{\rho}) \ge V_k^{(\pi'_k, \pi^*_{-k})}(\boldsymbol{\rho}) - \epsilon, \ \forall k \in \mathcal{N}, \forall \pi'_k.$$

- Agents do not share randomness.
- Fixing all agents but *i*, induces a classic MDP. Every agent aims at (approximate) best response.

Solution Concept: Nash equilibrium

- Every agent k picks a policy π_k .
- The goal of each agent is to maximize their own value.

An ϵ -approximate Nash equilibrium (NE) $\pi^* = (\pi_1^*, \dots, \pi_n^*)$ means that no agent can unilaterally increase their expected value more than ϵ ,

$$V_k^{\pi^*}(\boldsymbol{\rho}) \ge V_k^{(\pi'_k, \pi^*_{-k})}(\boldsymbol{\rho}) - \epsilon, \ \forall k \in \mathcal{N}, \forall \pi'_k.$$

- Agents do not share randomness.
- Fixing all agents but *i*, induces a classic MDP. Every agent aims at (approximate) best response.
- Generalizes notion of Nash Equilibrium.
- Nash policies always exist (Fink 64).

The bad news

Markov games generalize normal form games.

Inherit computational intractability

The bad news

Markov games generalize normal form games.

Inherit computational intractability

Daskalakis, Goldberg, Papadimitriou 06]

[Chen, Deng 06]

[Rubinstein 15]

PPAD-hard

The bad news

Markov games generalize normal form games.

Inherit computational intractability

[Daskalakis, Goldberg, Papadimitriou 06] [Chen, Deng 06]

[Rubinstein 15] PPAD-hard

Specific classes of games?

 Two-player zero sum Markov games

$$- \mathcal{N} = \{1, 2\}, \text{ i.e., } n = 2,$$

 $-\mathcal{A}, \mathcal{B}$, the finite action space of players 1, 2 respectively.

$$-r_2=-r_1,$$

- rest the same.

Conventions

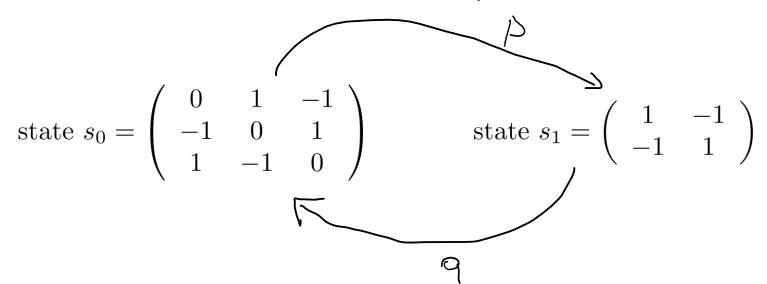
- We call player 2 the maximizer and player 1 the minimizer.
- The value of maximizer is $V^{(\pi_1,\pi_2)}(\rho)$.

$$- \mathcal{N} = \{1, 2\}, \text{ i.e., } n = 2,$$

- $-\mathcal{A}, \mathcal{B}$, the finite action space of players 1, 2 respectively.
- $-r_2=-r_1,$
- rest the same.

Conventions

- We call player 2 the maximizer and player 1 the minimizer.
- The value of maximizer is $V^{(\pi_1,\pi_2)}(\rho)$.



A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game

$$\min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(\boldsymbol{\rho}) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(\boldsymbol{\rho})$$

A crucial property:

Theorem (Shapley 53). In any two-player zero-sum Markov game

$$\min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(\boldsymbol{\rho}) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(\boldsymbol{\rho})$$

- The game has a unique value V^* (recall Von Neumann for normal form two player zero-sum games).
- The theorem implies it does not matter who plays first.
- The function is **not** convex-concave!
- The proof of Shapley uses a contraction argument.
- The complexity of finding a Nash equilibrium is unknown.

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of the corresponding zero-sum game.

e.g., val
$$\left[\begin{bmatrix} -1,1\\1,-1 \end{bmatrix} \right] = 0$$
.

Proof. Similar to Bellman, different operator.

Let val(.) be the operator applied to a payoff matrix that returns the value of the corresponding zero-sum game.

e.g., val
$$\left(\begin{bmatrix} -1,1\\1,-1\end{bmatrix}\right)=0$$
.

Fact: $|val(A) - val(B)| \le max_{i,j}|A_{ij} - B_{ij}|$

Given a value vector V(s), we define the operator \mathcal{T}

$$\mathcal{T}V(s) := \text{val}(r_2(s,.,.) + \gamma \sum_{s'} \mathbb{P}(s'|s,.,.)V(s')).$$

$$\begin{split} \|\mathcal{T}V - \mathcal{T}V'\|_{\infty} &= \left\| \operatorname{val}\{r(s,.,.) + \gamma \sum_{s'} \mathbb{P}(s'|s,.,.)V(s')\} - \operatorname{val}\{r(s,.,.) + \gamma \sum_{s'} \mathbb{P}(s'|s,.,.)V'(s')\} \right\|_{\infty} \\ &\leq \left\| \max_{a,b} \{r(s,a,b) + \gamma \sum_{s'} \mathbb{P}(s'|s,a,b)V(s') - r(s,a,b) - \gamma \sum_{s'} \mathbb{P}(s'|s,a,b)V'(s')\} \right\|_{\infty} \\ &= \gamma \left\| \max_{a,b} \{\mathbb{P}_{a,b}(V - V')\} \right\|_{\infty} \\ &\leq \gamma \|V - V'\|_{\infty} \end{split}$$

$$\begin{split} \left\| \mathcal{T}V - \mathcal{T}V' \right\|_{\infty} &= \left\| \operatorname{val}\{r(s,.,.) + \gamma \sum_{s'} \mathbb{P}(s'|s,.,.)V(s')\} - \operatorname{val}\{r(s,.,.) + \gamma \sum_{s'} \mathbb{P}(s'|s,.,.)V'(s')\} \right\|_{\infty} \\ &\leq \left\| \max_{a,b} \{r(s,a,b) + \gamma \sum_{s'} \mathbb{P}(s'|s,a,b)V(s') - r(s,a,b) - \gamma \sum_{s'} \mathbb{P}(s'|s,a,b)V'(s')\} \right\|_{\infty} \\ &= \gamma \left\| \max_{a,b} \{\mathbb{P}_{a,b}(V - V')\} \right\|_{\infty} \\ &\leq \gamma \left\| V - V' \right\|_{\infty} \end{split}$$

- Bellman operator is contracting for infinity norm.
- Applying the operator does not give a polynomial time algorithm. Why?

Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

$$\pi_k(a \mid s) = x_{k,s,a}$$

with $x_{k,s,a} \geq 0$ and $\sum_{a \in A_k} x_{k,s,a} = 1$.

Policy Gradient Iteration

Definition (Direct Parametrization). Every agent uses the following:

$$\pi_k(a \mid s) = x_{k,s,a}$$

with $x_{k,s,a} \geq 0$ and $\sum_{a \in A_k} x_{k,s,a} = 1$.

Definition (Policy Gradient Ascent). *PGA* is defined iteratively:

$$x_k^{(t+1)} := \Pi_{\Delta(A_k)^S}(x_k^{(t)} + \eta \nabla_{x_k} V_k^{x^{(t)}}(\rho),$$

where Π denotes projection on product of simplices.

Some facts about Policy Gradient

Definition (Policy Gradient Ascent). *PGA* is defined iteratively:

$$x_k^{(t+1)} := \Pi_{\Delta(A_k)^S}(x_k^{(t)} + \eta \nabla_{x_k} V_k^{x^{(t)}}(\rho),$$

where Π denotes projection on product of simplices.

Theorem (Policy Gradient Ascent [Agarwal et al 2020]). *It can be shown for one agent that after* $O(1/\epsilon^2)$ *iterations, an* ϵ -optimal policy can be reached.

Theorem (Policy Gradient Descent/Ascent [Daskalakis et al 2020]). It can be shown a two-time scale Policy Gradient Descent/Ascent can give an ϵ -Nash equilibrium in poly $(1/\epsilon)$ time.

- No guarantees for more than two players (only very specific settings).
- Can we find other classes of Markov games that PGA converges?
- In general, approximating even stationary CCE is PPAD-complete [Daskalakis et al 2022].