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Recap

Three desirable guarantees

1. DSIC: Truthful bidding is a dominant
strategy.

Easy to play for bidders, Predict outcome.

2. Social surplus maximization:

D ieq TV,

where x; is the amount allocated to i.

3. The auction can be implemented in
polynomial time.
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An Example: Sponsored Search
Auctions

Every time you type a query into a search
engine, an auction is run to decide which
advertisers’ links are shown, the order of the

links, and how advertisers are charged.
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An Example: Sponsored Search
Auctions

Every time you type a query into a search
engine, an auction is run to decide which
advertisers’ links are shown, the order of the
links, and how advertisers are charged.

Probability
e |tems for sale are k “slots” to get a click
e Bidders are the advertisers.
* Each slotj has CTR (click-through-rate) @;

* Each bidder i has private valuation v; and
getsvalue a; - v;. Notea; = ... = ay

Intro to AGT



Definitions

Definition (Single parameter environments). A single parameter
environment is defined:

e n bidders with private v;,

e Feasible set X, each element of which is a n-dimensional vector
(X1, ..., X)) in which x; is the amount of "stuff” given to i.

Examples:

1. Single-item auctions: X’is 0-1 vectors with at most one 1, i.e., Yx; < 1.

2. kidentical goods, each bidder gets at most one: X’ is 0-1 vectors with Y x; < k.
3.

In sponsored search, AX'is the set of n-vectors with x; being a; if slot j is assigned
to bidder i.
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More Definitions

Examples:

1. Single-item auctions: X'is 0-1 vectors with at mostone 1, i.e., Y.x; < 1.

2. ki identical goods, each bidder gets at most one: X" is 0-1 vectors with Y x; < k.
3. Insponsored search, Xis the set of n-vectors with x; being q; If slot j is assigned

to bidder i.

Definition (Allocation and Payments). A sealed-bid auction
is defined:

1. Bidders report bids b = (b, .., by),

2. Auctioneer chooses feasible allocation x(b) € X.
3. Auctioneer chooses payments p(b) € R".

4. Bidder i gets utility u; = v; - x;(b) — p;(b).
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Monotone Allocations and Myerson’s
Lemma

Definition (Monotone Allocations). An allocation rule x
for a single-parameter environment is monotone if for every bidder i and bids
b_; by rest of bidders, the allocation

xi(z,b_;) is nondecreasing in z.

Intro to AGT



Monotone Allocations and Myerson’s
Lemma

Definition (Monotone Allocations). An allocation rule x
for a single-parameter environment is monotone if for every bidder i and bids
b_; by rest of bidders, the allocation

xi(z,b_;) is nondecreasing in z.

Theorem (Myerson’s Lemma). Let (x, p) be a mechanism.
We assume that p;(b) = 0 whenever b; = 0, for all bidders i.
1. It holds that if (x, p) is DSIC mechanism then x is monotone.

2. If x is a monotone allocation, then there is a unique payment rule
such that (x,p) is DSIC.
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Myerson’s Lemma: Monotone

Proof. Suppose (x,p) is a DSIC and let 0 <y < z.
If bidder ¢ has private valuation z, to avoid reporting y, DSIC demands

z-xi(2) —pi(z) > z-x;(y) — p;(y) for all 7.
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Myerson’s Lemma: Monotone

Proof. Suppose (x,p) is a DSIC and let 0 <y < z.

If bidder ¢ has private valuation z, to avoid reporting y, DSIC demands
z-xi(2) —pi(2) > 2 2i(y) — pi(y) for all 4.

If bidder ¢ has private valuation v, to avoid reporting z, DSIC demands

y-xi(y) —pily) > y-xi(2) — pi(2) for all 7.
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Myerson’s Lemma: Monotone

Proof. Suppose (x,p) is a DSIC and let 0 <y < z.

If bidder ¢ has private valuation z, to avoid reporting y, DSIC demands
z-xi(2) —pi(2) > 2 2i(y) — pi(y) for all 4.

If bidder ¢ has private valuation v, to avoid reporting z, DSIC demands
y-xi(y) —pily) > y-xi(2) — pi(2) for all 7.

Combining the two inequalities:

z - (zi(y) — 7:(2)) < ply) — p(2) <y (2i(y) — 7:(2))
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Myerson’s Lemma: Monotone

Proof. Suppose (x,p) is a DSIC and let 0 <y < z.

If bidder ¢ has private valuation z, to avoid reporting y, DSIC demands
z-xi(2) —pi(2) > 2 2i(y) — pi(y) for all 4.

If bidder ¢ has private valuation v, to avoid reporting z, DSIC demands
y-xi(y) —pily) > y-xi(2) — pi(2) for all 7.

Combining the two inequalities:

i (y) < T4(2)
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Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise
constant (simple function). if there is a jump at z (say of magnitude h) then as
y — z from left we get
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Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise
constant (simple function). if there is a jump at z (say of magnitude h) then as
y — z from left we get

iU(Z)‘
1- o—
2-h<ply)—plz) <y-h
o—-e
Hence there exists a jump in p so that © ¢
0 ® >

jump in p at z =z - jump 1n x; at z

Intro to AGT



Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

Proof cont. Assume x is monotone for the rest of the proof and x is piecewise
constant (simple function). if there is a jump at z (say of magnitude h) then as
y — z from left we get

iU(Z)‘
1- o—
2-h<ply)—plz) <y-h
o—-e
Hence there exists a jump in p so that © ¢
0 ® >

jump in p at z =z - jump 1n x; at z
We conclude that (given p;(0) = 0)

l

pi(bi: b_z) — sz -jump in LEZ‘(., b_@) at Zjs
j=1

where 21, ..., 2; are the breakpoints of z;(.,b_;) in [0, b;].
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Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

l

pi(bia b_z) — Z Zj - jump in .CBZ‘(., b_%) at Zj
=l

Proof cont. Assume x is monotone and suppose that x is differentiable.
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Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

l

pi(bia b_z) — Z Zj - jump in .CBZ‘(., b_z) at Zj
=l

Proof cont. Assume x is monotone and suppose that x is differentiable.

If we devide both sides on the top inequality and let y — 2z we get

pi(z) = 2 - z;(2)
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Myerson’s Lemma: Payments

z - (zi(y) — =:(2)) < ply) — p(2) <y (zi(y) — z:(2))

l

pi(bia b_z) — Z Zj - jump in .CBZ‘(., b_%) at Zj
=l

Proof cont. Assume x is monotone and suppose that x is differentiable.

If we devide both sides on the top inequality and let y — 2z we get

pi(z) = 2 - z;(2)

b.
! dxi(z,b_,i)
i(bi, b_;) = : dz.
| b = [ S
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Myerson’s Lemma: DSIC

Proof cont. By picture.

v b
(b) v-x(b) with b > v

—

(e) p(b) with b > v

x(2)) x(z))
17 —— 1
0 v=> -;z 0

(a) v-z(v)

z(2)) z(z))
1 — 1
0 v - b >z 0

(d) p(v)

x(2) x(z)p
1 — 1
0 b > 0

(g) utility with b= v

v b
(h) utility with b > v
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Back to Sponsored Search Auctions

Remark: Myerson’s Lemma regenerates the Vickrey auction as a special case. (why?)
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Back to Sponsored Search Auctions

Remark: Myerson’s Lemma regenerates the Vickrey auction as a special case. (why?)

Answer: Fix i, b_; and set B = max b;. Then x;(z,b_;) is0for 0 < z < B forand 1
JET!
for z > B. Moreover, p;(z,b_;) = Bforz>Band0for0 <z < B.
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Back to Sponsored Search Auctions

Remark: Myerson’s Lemma regenerates the Vickrey auction as a special case. (why?)

Answer: Fix i, b_; and set B = max b;. Then x;(z,b_;) is0for 0 < z < B forand 1
J#i

for z > B. Moreover, p;(z,b_;) = Bforz>Band0for0 <z < B.

Approach:
e Step 1: Assume, without justification, that bidders bid truthfully. How should we

assign bidders to slots so that we can maximize surplus?

e Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC
holds?
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Back to Sponsored Search Auctions

Remark: Myerson’s Lemma regenerates the Vickrey auction as a special case. (why?)

Answer: Fix i, b_; and set B = max b;. Then x;(z,b_;) is0for 0 < z < B forand 1
JET!
for z > B. Moreover, p;(z,b_;) = Bforz>Band0for0 <z < B.

Approach:
e Step 1: Assume, without justification, that bidders bid truthfully. How should we

assign bidders to slots so that we can maximize surplus?
e Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC

holds?

* Assign to the j-th highest bidder the j-th highest slot for j = 1, ..., k. Note that
this can be done in polynomial time. Moreover, the allocation is monotone!
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Remark: Myerson’s Lemma regenerates the Vickrey auction as a special case. (why?)

Answer: Fix i, b_; and set B = max b;. Then x;(z,b_;) is0for 0 < z < B forand 1
J#i

for z > B. Moreover, p;(z,b_;) = Bforz>Band0for0 <z < B.

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we
assign bidders to slots so that we can maximize surplus?

e Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC
holds?

* Assign to the j-th highest bidder the j-th highest slot for j = 1, ..., k. Note that
this can be done in polynomial time. Moreover, the allocation is monotone!
From Myerson’s Lemma, there are payments that make the above DSIC.
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Back to Sponsored Search Auctions

Approach:

e Step 1: Assume, without justification, that bidders bid truthfully. How should we
assign bidders to slots so that we can maximize surplus?

e Step 2: Given our answer to Step 1, how should we set selling prices so that DSIC
holds?

* Assign to the j-th highest bidder the j-th highest slot for j = 1, ..., k. Note that
this can be done in polynomial time. Moreover, the allocation is monotone!
From Myerson’s Lemma, there are payments that make the above DSIC.

Consider by = ... = b,. Focus on first bidder (fix other bidders) and assume bid

ranges from O to b;. The allocation x;(z, b_1) ranges from 0 to a, with a jump at
bj+1 of a; - aj;, (when bidder 1 becomes j-th highest effectively).
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Back to Sponsored Search Auctions

Approach:

* Assign to the j-th highest bidder the j-th highest slot for j = 1, ..., k. Note that
this can be done in polynomial time. Moreover, the allocation is monotone!
From Myerson’s Lemma, there are payments that make the above DSIC.

Consider by = ... = b,. Focus on first bidder (fix other bidders) and assume bid
ranges from O to b;. The allocation x;(z, b_1) ranges from 0 to a, with a jump at
bj+1 of a; - aj;, (when bidder 1 becomes j-th highest effectively). Hence for the
i-th highest bidder we get the payment

k
pi(b) = Z bj+1(a; —aji1)
=i
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