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Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph G(V, E) and k, is there an independent set in G of
size > k. Independent set is called a set I c V of vertices such that pairwise the
vertices in I are not connected.

1%
1r v Vs QGraph G.

Vertices vz, vs, v7, vg form
an independent set.

Vg
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Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph G(V, E) and k, is there an independent set in G of
size > k. Independent set is called a set I c V of vertices such that pairwise the
vertices in I are not connected.

1%
1r v Vs QGraph G.

Vertices vz, vs, v7, vg form
an independent set.

Vg JL 6 Us

Claim: INDEPENDENT SET is NP-complete.

Proof: (1) INDEPENDENT SET belongs to NP (why?).
(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-
hard, INDEPENDENT SET is NP-hard.
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Warm-up: Reductions in NP

Example: INDEPENDENT SET (IS) Problem

Given a simple undirected graph G(V, E) and k, is there an independent set in G of
size > k. Independent set is called a set I < V of vertices such that pairwise the
vertices in I are not connected.

1%
1r v Vs QGraph G.

Vertices vz, vs, v7, vg form
an independent set.

Vg JL 6 Us

(1), (2) imply IND. SET

Claim: INDEPENDENT SET is NP-complete. is NP-complete!

Proof: (1) INDEPENDENT SET belongs to NP (why?).
(2) Reduce 3-SAT to INDEPENDENT SET. Since 3-SAT is NP-
hard, INDEPENDENT SET is NP-hard.

Intro to AGT



3-SAT reduction to IS

Problem: 3-SAT

Given a Boolean expression E, such that E is a conjunction
of clauses, where each clause is a disjunction of exactly 3
literals, is E satisfiable?
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3-SAT reduction to IS

Problem: 3-SAT

Given a Boolean expression E, such that E is a conjunction
of clauses, where each clause is a disjunction of exactly 3
literals, is E satisfiable?

A literal is a Boolean expression consisting of just a single Boolean
variable, or the negation of a Boolean variable.

 Example: “—x;” and “x,” are literals.

A clause is a Boolean expression of the form “¢; v €, vV --- vV £.”, i.e.a
disjunction of some literals £, 5, ..., £;. In 3-SAT k = 3.

* Example: “C; = x4 V—x, V x3” is a clause.
A Boolean expression is a conjunction of clauses.
Example: “E = C; A C, A C3” is a clause.
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3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the
expression is True?

Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!
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3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the
expression is True?

Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!

E = (x1V922 V?Z3)/\(.72'1 VXZ VX3)/\(.72'1 sz VJZ'3)/\(.X'1 VJZ'Z ng)
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3-SAT reduction to IS

Satisfiability: Can you assign True, False to the variables so that the
expression is True?

Theorem (3-SAT is NP-complete). The 3-SAT problem is NP-complete!

Cl OQ 03 04
E — (X1 V.)Z'Z V323)/\(321 VXZ Vx3) /\(32'1 sz VJZ'S)/\ (x1 VJZ'Z Vx3)
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3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced
graph G has an IS of size k.

Therefore, given a graph G and a k, if we can identify in poly-time if there

exists an Independent Set of size at least k, then we can solve in poly-time
3-SAT.
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graph G has an IS of size k.

Therefore, given a graph G and a k, if we can identify in poly-time if there
exists an Independent Set of size at least k, then we can solve in poly-time
3-SAT.

3-SAT <, INDEPENDENT SET =

INDEPENDENT SET is NP-complete!

Question: Can the problem of computing a Nash Equilibrium be NP-
complete?
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3-SAT reduction to IS

Claim: Expression E with k clauses is satisfiable if and only if the induced
graph G has an IS of size k.

Therefore, given a graph G and a k, if we can identify in poly-time if there
exists an Independent Set of size at least k, then we can solve in poly-time
3-SAT.

3-SAT <, INDEPENDENT SET =

INDEPENDENT SET is NP-complete!

Question: Can the problem of computing a Nash Equilibrium be NP-
complete?

Answer: (Megiddo) Suppose we have a reduction from SAT to NASH, s.t any
solution to the instance of NASH tells us whether or not the SAT instance has
a solution. Then we could turn this into a nondeterministic algorithm for
verifying that an instance of SAT has no solution: Just guess a solution of the
NASH instance, and check that it indeed implies that the SAT instance has no
solution. NP = co-NP (unlikely).
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The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify
local search problems. An abstract local search problem is specified by three
polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT

Given an undirected graph G = (V, E) with non-negative weights w, on edges,
find a cut (.5,.5) that maximizes the total weight of cut edges. You are allowed to
do only local moves that improve the objective, i.e., moving one vertex v from
one side of the cut to the other that improves the total weight of cut edges.
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The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify
local search problems. An abstract local search problem is specified by three
polynomial-time algorithms.

Canonical Problem: LOCAL MAX-CUT
Given an undirected graph G = (V, E) with non-negative weights w, on edges,
find a cut (.5,.5) that maximizes the total weight of cut edges. You are allowed to

do only local moves that improve the objective, i.e., moving one vertex v from
one side of the cut to the other that improves the total weight of cut edges.

Remark: (classic) MAX-CUT is NP-Complete.
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The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify
local search problems. An abstract local search problem is specified by three
polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).
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PLS (Polynomial-time Local Search) is a complexity class intended to exemplify
local search problems. An abstract local search problem is specified by three
polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).

2. The second algorithm takes as input an instance and a feasible solution, and
returns the objective function value of the solution (for LOCAL MAX-CUT it
is the sum of the total weight of the edges crossing the cut).
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The class PLS

PLS (Polynomial-time Local Search) is a complexity class intended to exemplify
local search problems. An abstract local search problem is specified by three
polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary
feasible solution (for LOCAL MAX-CUT this is an arbitrary cut).

2. The second algorithm takes as input an instance and a feasible solution, and
returns the objective function value of the solution (for LOCAL MAX-CUT it
is the sum of the total weight of the edges crossing the cut).

3. The third algorithm takes as input an instance and a feasible solution and
either reports “locally optimal” or produces a better solution (for LOCAL
MAX-CUT it checks all possible |V | moves. If one improves the objective
choose that move).

Theorem (Local Max-cut is PLS-complete). The LOCAL MAX-CUT problem
is PLS-complete.

Intro to AGT



The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof. We show first that PNE CONGESTION GAMES € PLS.

Describe the three algorithms:

e First algorithm takes as input a congestion game and returns an arbitrary
strategy profile (e.g., all agents choose first path).
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Describe the three algorithms:

e First algorithm takes as input a congestion game and returns an arbitrary
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The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof. We show first that PNE CONGESTION GAMES € PLS.

Describe the three algorithms:

e First algorithm takes as input a congestion game and returns an arbitrary
strategy profile (e.g., all agents choose first path).

e Second algorithm takes a congestion game and a strategy profile s, and
returns the value of the potential function ®(s) =) . Zg (i) Ce(F)-

e The third algorithm checks if the given strategy profile s is a PNE; if not,
we find an agent i that deviates from s; to another pure s, and decreases
her utility. Then ®(sl,s_;) < ®(s;,s5—;). This can be done polynomial
time in the description of the game.

Intro to AGT



The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph G(V, E) we define the following congestion game:

e Agents are the vertices V.
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The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph G(V, E') we define the following congestion game:
e Agents are the vertices V.

e For each edge e € E we have two resources r., 7. (2|F| resources in total).
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The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph G(V, E') we define the following congestion game:
e Agents are the vertices V.
e For each edge e € E we have two resources r, 7. (2|F| resources in total).

e [ach player v has two strategies,
sy, = {re : e is incident to v} and 5, = {7, : e is incident to v}.
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The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Given a weighted graph G(V, E) we define the following congestion game:
e Agents are the vertices V.
e For each edge e € E we have two resources r., 7. (2|F| resources in total).

e Each player v has two strategies,
Sy = {re : e is incident to v} and 5, = {7, : e is incident to v}.

e The cost ¢, /cz. of a resource r. or 7, is 0 if one agent uses it and w, if
two players use it.

This transformation is poly-time.

Intro to AGT



The complexity of Pure Nash Eq.

Theorem (PNE in congestion games is PLS-complete). The problem of
computing Pure Nash Equilibria in Congestion Games is PLS-complete.

Proof cont. We now reduce LOCAL MAX-CUT to PNE CONGESTION GAMES.

Each agent has two strategies,
red and green.

Say agents v1,ve choose red and wvs,vs choose green. Cost of vy, vs is we, and
of v, vy is we..

Intro to AGT



The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this
congestion game and cuts of the given graph G.
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The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this
congestion game and cuts of the given graph G. Given a cut (S, S) (agents in
S choose red and agents in S choose green strategy), we have that

w(S,S) = Z We = Z we — P(s,3).

e=(u,v):u€S,veS eckE

Intro to AGT



The complexity of Pure Nash Eq.

Proof cont. Observe that there is a bijection between strategy profiles of this
congestion game and cuts of the given graph G. Given a cut (S, S) (agents in
S choose red and agents in S choose green strategy), we have that

w(S,S) =

2.

e=(u,v):u€S,veS

We = Z we — P(s,5).

eckh

Therefore:

e Cuts with larger weight correspond to strategy profiles with smaller po-

tential.

e [ocal maxima of cuts of GG correspond to local minima of the potential

function.

Intro to AGT



The class PPAD

Suppose that an exponentially large graph with vertex set {0,1}"
(i.e, 2™ vertices) is defined by two circuits:

possible previous

node — — node Example:
possible next
()
node — —> node U1

N(”Ul) = VU2 and P('UQ) = 1

Intro to AGT



The class PPAD

Suppose that an exponentially large graph with vertex set {0,1}"
(i.e, 2™ vertices) is defined by two circuits:

possible previous

node — —s node Example:
possible next
()
node — — node v1

N(”Ul) = VU2 and P('UQ) = 1

Canonical Problem:

END OF THE LINE: Given P,N: If 0" is an unbalanced node, find
another unbalanced node. Otherwise return 0™.

PPAD (Papadimitriou 94°): All problems in FNP reducible to END OF

THE LINE.

Intro to AGT



2D Sperner’s Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of
2d simplex A and a proper 3-coloring, that assign each vertex a different color
and inside vertices on each edge of A use only the two colors of the respective
endpoints. Then there always exists a trichromatic triangle (odd in number!).
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2D Sperner’s Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of
2d simplex A and a proper 3-coloring, that assign each vertex a different color
and inside vertices on each edge of A use only the two colors of the respective
endpoints. Then there always exists a trichromatic triangle (odd in number!).

No yellow

No blue =

’—
—

No red
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2D Sperner’s Lemma

Theorem (A trichromatic triangle always exist). Consider triangulation of
2d simplex A and a proper 3-coloring, that assign each vertex a different color
and inside vertices on each edge of A use only the two colors of the respective
endpoints. Then there always exists a trichromatic triangle (odd in number!).

—

No yellow

No blue =

|
No red
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2D Sperner’s Lemma

Proof. We introduce an outer boundary for conveniece that does not create
new trichromatic triangles. Next we define a directed walk starting from the
bottom-left triangle.
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Walk: If there exists red-yellow edge cross
It, with red on your left.
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2D Sperner’s Lemma

Proof. We introduce an outer boundary for conveniece that does not create
new trichromatic triangles. Next we define a directed walk starting from the
bottom-left triangle.

Walk: If there exists red-yellow edge cross
It, with red on your left.
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2D Sperner’s Lemma

Proof cont.

e The walk cannot exit the outer triangle (why?).

e The walk does not contain p shapes (why?).




2D Sperner’s Lemma

Proof cont.

e The walk cannot exit the outer triangle (why?).

e The walk does not contain p shapes (why?).

The walk will terminate incide somewhere!

That small triangle should be trichromatic!

L\
A
S W
NSRS
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2D Sperner’s Lemma

Proof cont.

e The walk cannot exit the outer triangle (why?).

e The walk does not contain p shapes (why?).

ite incide somewhere!
Sperner’s Lemma can be generalized ould be trichromatic!
for higher dimensions. SPERNER problem
is like END OF THE LINE!

Intro to AGT



BROUWER

Definition (BROUWER). The problem BROUWER is defined below:

Input: A poly-time algorithm 11 for the evaluation of a function
F: 10,1 — |0,1]™, a constant K such that F is K-Lipschitz and accuracy e.

Output: A (rational) point x so that
IF(x) = ¥l <€,

i.e., x is an approximate fixed point.

Intro to AGT



BROUWER

Definition (BROUWER). The problem BROUWER is defined below:

Input: A poly-time algorithm 11 for the evaluation of a function
F: 10,1 — |0,1]™, a constant K such that F is K-Lipschitz and accuracy e.

Output: A (rational) point x so that
IF(x) = ¥l <€,

i.e., x is an approximate fixed point.

We will show that

BROUWER — SPERNER

Intro to AGT



2D BROUWER reduction to
SPERNER

Let F : [0,1]> — [0, 1]%. By uniform continuity

there exists a d(€) so that

¥ =Yl <0 = [[F(x) = F(y) [l <€

loo <

Diameter of each cell
is at most (¢)




2D BROUWER reduction to
SPERNER

Let F : [0,1]> — [0, 1]%. By uniform continuity
there exists a d(€) so that

¥ =Yl <0 = [[F(x) = F(y) [l <€

Diameter of each cell
is at most (¢)

Color the nodes of the triangulation
according to the direction of f(x) — x.

yellow

red
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2D BROUWER reduction to
SPERNER

Let F : [0,1]> — [0, 1]%. By uniform continuity
there exists a d(€) so that

¥ =Yl <0 = [[F(x) = F(y) [l <€

Diameter of each cell
is at most (¢)

Color the nodes of the triangulation
according to the direction of f(x) — x.

: vellow Tie-break at the
boundary angles, so
that the resulting
coloring respects the
red boundary conditions!
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2D BROUWER reduction to
SPERNER

Claim. Choose 6 = min(d(€), €) and let v¥ be the yellow
vertex of a trichromatic triangle. It holds that

|E(0¥) — 0|, < 2e.

Diameter of each cell
is at most (¢)

Color the nodes of the triangulation
according to the direction of f(x) — x.

: vellow Tie-break at the
boundary angles, so
that the resulting
coloring respects the
red boundary conditions!
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2D BROUWER reduction to
SPERNER

Claim. Chod

ellow

gazaorss  This will be in HW2.

b

Intro to AGT

Diameter of each cell
is at most (¢)

Color the nodes of the triangulation
according to the direction of f(x) — x.

A :
: yellow 1ie-break at the

blue ' boundary angles, so
|, thatthe resulting
coloring respects the
red boundary conditions!



NASH reduction to BROUWER

We will not see the proof, just an idea.

ntro to AGT



NASH reduction to BROUWER

We will not see the proof, just an idea.

Consider the 2 X 2 mathcing pennies.

H T

1,-1 -
H , 1,1
1.1 -
T , 1,-1

Consider the function f from the proof of Nash.

() = z;(s;) +max{u;(s;;x_;) — ui(x),0}
o) 1+ cs, max{u;(s’sz—;) — ui(z),0}
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NASH reduction to BROUWER

x;(s;) + max{u;(s;;x_;) — ui(x),0}

fis; (x) = 1+ Zs,esi max{u;(s;x_;) — u;(x),0}

Draw the vector field for f(x) — x.

Intro to AGT
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1,-

-1,1
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NASH reduction to BROUWER

f; ( ) . xz(sz) + maX{’UJ@'(S@'; .’L'_z') — ui(a:),O}
A 1+ ZS’ESi max{u,,;(s’; 33_7;) - ’LLZ(LE), 0} 1,1 1,-1

Draw the vector field for f(x) —x.  Color the points according to

0

yellow

blue

->

red
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NASH reduction to BROUWER

f@Sz(x) -

xi(8;) + max{u;(s;;x—;) — u;(x),0}

1+ D _ores, max{u;i(s’;x ;) — ui(x),0}

Draw the vector field for f(x) — x.

— 3

——

—- Sl

—_— . - —

— T e = > > > e —> — -

—_— > > > - > > > —

T e > > > —

L

EE O O R R e

////////
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-1,1 1,-1

Color the points according to




NASH reduction to BROUWER

oy Tilse) + max{ug(si;z—i) — ui(x),0}
(0 =5 + 2 ses, max{u (s 0—;) — ui(x),0} 1,1 1,-1

Draw the vector field for f(x) —x.  Color the points according to

— 3

——

= Sl s

—_— - —
—_— T e > > > > —> — —
—_— e e . s s —
T > > = —
T T W = e [
T O A A e e

///////////

Nash equilibrium (3, 1)!
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Inclusions we showed

NPNco-NP
t

PPA

SPERNER

N\

BROUWER &

NASH

ntro to AGT



Theorem ((NASH is PPAD-complete) Daskalakis, Goldberg, Papadimitriou).
NASH is PPAD-complete.

PPAD —— SPERNER =—— BROUWER

NASH

Intro to AGT



Inclusions: The full picture

NPNco-NP
t
PPAD

SPERNER

\

BROUWER

NASH

ntro to AGT
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