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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.
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Playing the experts game

Definition. For each day t = 1...T, you have to choose between alternatives A, B
(e.g., rain or not rain).

e Choose A or B according to some rule.
e One of the alternatives realizes.
e If you choose correctly you are not penalized otherwise you lose one point.

e [magine that there are n experts who on each day t, recommend either A or B.

Can you be correct all the time? What is the “right” objective?

Perform close to best expert!
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Playing the experts game

Algorithm (Weighted Majority). We define the following algorithm:

1. Initialize wP = 1 for all i € [n]. Rem?rkS: _
* € isthe stepsize (to be

2. For t=1 ... T do chosen later).

3. If Zz choose A ,wf—l = Zi‘, choose B (w'f_l * Performs aImOSt as gOOd
4. Choose A, otherwise B. as. best” expert (fewest

mistakes)

5. End If

6. For expert ¢ that made a mistake do

7. wt = (1 — e)wi .

8. End For

9. For expert ¢ that did not make a mistake do
10. w! = wg_l.
11. End For
12. End For
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Playing the experts game

Theorem (Weighted Majority). Let My, M% be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr <2(14e)ME + OE”.

Proof. Let’s define the potential function ¢, =Y, w?.
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Theorem (Weighted Majority). Let My, M% be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr < 2(1+e)MB + 287

Proof. Let’s define the potential function ¢, = Y, w!
® (g =n.

® @t—{—l S d)t (Why?)
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Playing the experts game

Theorem (Weighted Majority). Let My, M% be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr <2(1+e)MB + Og”.

Proof. Let’s define the potential function ¢, =Y, w?.
® ¢p =mn.

® Cbt—kl S d)t (Why?)

Observe that if we make a mistake at time ¢ then the majority was wrong, that
is at least % will be multiplied by (1 — €).

Hence, if we make a mistake then ¢, < (1 — 6)% - % = (1 — $)¢y
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Playing the experts game

Theorem (Weighted Majority). Let My, M% be the total number of mistakes the
algorithm and best expert make until step T, respectively. It holds that

1
Mr <2(1+e)MB + OE”.

Proof. Let’s| That is ¢¢y1 < (1 — 5)¢: when we do a mistake, otherwise
s just ¢¢ 1 < ¢@¢. Since we have M7 mistakes, then
o ol

* b ¢ < (1 — %)MT P1.

Observe tha - that
is at least % will be multiplied by (1 — ¢).

Hence, if we make a mistake then ¢y, 1 < (1 — 6)% + % = (1—5)oy
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say ¢*) did MF mistakes, we
have .
oT >w3; = (1—€)MT.
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say ¢*) did MF mistakes, we
have .
oT >w3; = (1—€)MT.

We conclude that

(1— E)M'? < (1 — E)MT n.

By taking the log, M~ log(1 — €) < log(1 — €/2) Mt + logn.
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Playing the experts game

Proof cont. Moreover, assuming the best expert (say ¢*) did MF mistakes, we
have .
oT >w3; = (1—€)MT.

We conclude that

(1— E)M'? < (1 — E)MT n.

By taking the log, M~ log(1 — €) < log(1 — €/2) Mt + logn.

Since —x — z? < log(l — x) < —x,|ME(—€ — €*) < —Mye/2 + logn.
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The general setting

Definition. At each time step t = 1...T.
e Player chooses x; € Ay.
e Adversary chooses u; € [—1,1]".

e Player gets payoff x,' u; and observes u;.
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The general setting

Definition. At each time step t = 1...T.
e Player chooses x; € Ay.
e Adversary chooses u; € [—1,1]".

e Player gets payoff x,' u; and observes u;.

Player’s goal is to minimize the (time average) Regret, that is:

— | max g z ! Up — E x, Ug | -
[a:EA t
max E ZC Ut 3 — E Ty ut] .
) E

If Regret = 0 as T — oo, the algorithm is called no-regret.
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Multiplicative Weights Update

Algorithm (MWU). We define the following algorithm:

Remarks:
* €isthe stepsize (to be
chosen later).

—

. Initialize p) = & for all i € [n].

2o En =l e ek * Performs almost as good
3. For ecach ¢ that gives payoff u,; do as best” expert (fewest
4' ph+l — ppLbsns mistakes): |

‘ ‘  The algorithm is also
5. End For called Multiplicative
6. End For Weights Update!

¢ Z8=Tph(1+euy) s

renormalization
constant.
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Multiplicative Weights Update

Theorem (MWU). It holds that

1 Tt T log n
T;ufp zmﬁxgx up— — —e.

Proof. Let’s define the potential function ¢, = >, w! where
wh = TTE (14 eus4).
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Multiplicative Weights Update

Theorem (MWU). It holds that

1 Tt T log n
T;utp szlx;x up— — —e.

Proof. Let’s define the potential function ¢, = >, w! where
t
wh = T[_o(1 + €eus ).
Let the best strategy be ¢*, we have

T 2 T 2
P > WL > e 2us=0Usi* T Lismo Ui

Now (bt_|_1 = Z wf“ = Z’lUf(]- + Eut,i)
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1 Tt T log n
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T 2 T 2
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Multiplicative Weights Update

Theorem (MWU). It holds that

1 Tt T log n
T;utp szlx;x up— — —e.

Proof. Let’s define the potential function ¢, = >, w! where
t
wh = T[_o(1 + €eus ).
Let the best strategy be ¢*, we have

bp > wh > € Lm0 eix =€ ooy px
_ t+1 ;
Now Cbt—l—l — Z w; = sz(l + Eut,i)

= > O (1 + euy )
= ¢y pi (1 + euy ;)
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Multiplicative Weights Update

Proof cont. Therefore

P41 = Oy (1 + € pruzt)
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Multiplicative Weights Update

Proof cont. Therefore
dr+1 = Oy (1 t € pruzt)
i

N
< ¢re€ 2 Pitie = prett P’
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Multiplicative Weights Update

Proof cont. Therefore
bt11 = Ot (1 +€ pruzt)

N
< ¢re€ 2 Pitie = prett P’

Telescopic product gives

T _t T _t
dr < goet P = el P
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Multiplicative Weights Update

Proof cont. Therefore

P41 = Oy (1 + € pruzt)

N
< Q')teezipzui’t = et P’

Telescopic product gives

Tt T _t
O < et Ve P = pefi i P

T 2T 2 T ¢t )
Therefore e 2os=0 %ai* =€ 2sm0 Ys,i* < pe€ Ut P or equivalently

€OPT — T < eOPT — 25!, uZ;, <logn+ed>, ulp.
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Multiplicative Weights Update

Proof cont. Therefore

,
Sete > |— and we get regret

\/7 (No-regret!)

Telescopic product gives

T _t T, t
b1 < gt U P = peflit P

T 2T 2 T ¢ )
Therefore e 2=s=0 %s,i* =€ 20 Us,i* < pe€ 2% P or equivalently

€eOPT — 2T < eOPT — €2 ZST:O uZ;, <logn+ed>, ulp.

Intro to AGT



Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
XEA, YEA YEA xEAy

Remarks
 The above is the value of the game.
* Note that It is always true (min-max inequality):

infyex sup,cy f(x,y) > Sup, cy infrex f(x,y)
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
XA, YEA, YEA, XEA,

Remarks
 The above is the value of the game.
* Note that It is always true (min-max inequality):

Define g(z) £ 1%% f(z,w).
infxEX Supyey f(X, y) 2 SUPyEy irvw: VZ,Q(Z) < f(zs w)

— Yw, sup ¢(z) < sup f(z,w)

— sup g(z) < infsup f(z, w)

— supinf f(z,w) < infsup f(z, w)

z w o
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.

min max x ' Ay = max min x ' Ay
XA, YEA, YEA, XEA,

Proof. Let’s use no-regret learning for both ” players”!
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
XA, YEA, YEA, XEA,

Proof. Let’s use no-regret learning for both ” players”!

Let :Ul,..iz xr and Y1, ..., YT jpe the iterates as advised by MWU and define
T=g>, g rand =4 .y and T = @(n%)

Choose any x, then from the no-regret property for x we get that
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Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
XA, YEA, YEA, XEA,

Proof. Let’s use no-regret learning for both ” players”!

Let :Ul,..iz xr and Y1, ..., YT jpe the iterates as advised by MWU and define
T=g>, g rand =4 .y and T = @(n%)

Choose any x, then from the no-regret property for x we get that

%Zt z) Ay < % >oa Ay +
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Minimax Theorem

Theorem (Minimax by John von Neumann). Let A a matrix of size n X m.
. T o . T
min max x Ay = max min x Ay
XA, YEA, YEA, XEA,

Proof. Let’s use no-regret learning for both ” players”!

Let :Ul,..iz xr and Y1, ..., YT jpe the iterates as advised by MWU and define
T=g>, g rand =4 .y and T = @(n%)

Choose any x, then from the no-regret property for x we get that
7ot Ays < 7 35 x T Ay 4

=z A (Z%yt) + 1.
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%ZtZEIAyt > %Zt@fly—n

- (5) -
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%th;rAyt > %thCtTAy—??
T
= (3) 4y -

We conclude that for all x,y we have

(%)TAy —2n<z'A (Z,}yt) :
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%Ztm‘;rAyt > %thCtTAy—??
T
= (3) 4y -

We conclude that for all x,y we have

max,, (ZTxt)T Ay — 2n < min,z'A (Z%yt) .

Zy yt)
T

Finally we get max, min, z' Ay > min, z' A (
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%ZtZEIAyt > %thCtTAy—??
T
= (3) 4y -

We conclude that for all z,y we have

—
max,, (ZT“) Ay — 2np < mingz'A (Z%yt) .

Finally we get max, min, z' Ay > min, z' A (Z%yt)
1
> maxy, (%) Ay — 2n
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Minimax Theorem

Proof cont.

Choose any y, then from the no-regret property for y we get that

%ZtZEIAyt > %Zt@fly—n
T
= (3) 4y -

We conclude that for all z,y we have

—
max,, (ZT“) Ay — 2np < mingz'A (Z%yt) .

Finally we get max, min, z' Ay > min, z' A (#)
1
> maxy, (%) Ay — 2n

> min, max,, z' Ay — 2n
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Minimax Theorem

Proof cont.

Choose a Set n — 0 and we are done!  §

%th;rAyt > %th;rAy_n
T
= (%) 4y -n

We conclude that for all x,y we have

T T

max,, (Emt)TAy — 2n < mingz' A (Ztyt) :

Finally we get max, min,, x' Ay > min, z' A (Z%yt)
T
> max, (%) Ay — 27

> min, max,, x' Ay — 2n

Intro to AGT
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