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Potential Games

Definition (Potential Games). A normal form game is specified by
e set of n players [n] = {1,...,n}

e For each player i a set of strategies/actions S; and a utility
u; : ><;f‘:15]- — IR denoting the payoff of i.

* set of strategy profiles S = S1 X ... X Sy.

e There exists a potential function ® : S — IR so that for all agents i and s;, s’

D(s;,s_;) — D(si,s_;) = ui(si,s_;) — u;i(sh,s_;).
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Potential Games

Definition (Potential Games). A normal form game is specified by
e set of n players [n] = {1,...,n}

e For each player i a set of strategies/actions S; and a utility
u; : ><;-1:15j — IR denoting the payoff of i.

* set of strategy profiles S = S1 X ... X Sy.
e There exists a potential function ® : S — IR so that for all agents i and s;, s’
D(s;,s_;) — D(si,s_;) = ui(si,s_;) — u;i(sh,s_;).

Example (Battle of sexes).

5,2 -1,-2 4 0

-5, -4 1,4 :
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Potential Games

Definition (Potential Games). A normal form game is specified by

set of n pl ‘Weighted Potential Games:

e There exists a potential function ® : S — IR so that for all agents i and s;, s'

D(s;,s_;) — D(sl,5_;) = ui(si,s_;) — ui(sl,s_;).
Example (Battle of sexes).

5,2 -1,-2 4 0

5, -4 1,4 ;
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Potential Games

Question: What is interesting about these games?
Answer: A pure Nash equilibrium always exists!

Lemma. Let G be a potential game. It has a pure Nash equilibrium,.
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Potential Games

Question: What is interesting about these games?
Answer: A pure Nash equilibrium always exists!

Lemma. Let G be a potential game. It has a pure Nash equilibrium.

Proof. Let s* a pure strategy profile that maximizes ®. Then s* is a Nash
equilibrium.
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Potential Games

Question: What is interesting about these games?
Answer: A pure Nash equilibrium always exists!

Lemma. Let G be a potential game. It has a pure Nash equilibrium.

Proof. Let s* a pure strategy profile that maximizes ®. Then s* is a Nash
equilibrium. Assuming not, there is an agent i and strategy s, so that

ui(sy,s%;) < u(s;,s™;).
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Potential Games

Question: What is interesting about these games?
Answer: A pure Nash equilibrium always exists!

Lemma. Let G be a potential game. It has a pure Nash equilibrium.

Proof. Let s* a pure strategy profile that maximizes ®. Then s* is a Nash
equilibrium. Assuming not, there is an agent i and strategy s, so that

ui(sy,s%;) < u(s;,s™;).

O(sf,s* ) —P(s),s* ) = ui(s},s* ;) —u;(s},s*;) <O.

175 —1 175 —1

Contradiction!
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Potential Games

Algorithm (Greedy).

1. Initialize s(9 arbitrarily.
2. Loop

3.  Find agent i, s, so that u;(s], 5(2) > u;(s™M)

. t=t+1
6. If no agent exists STOP

Lemma. The algorithm above reaches a pure Nash equilibrium.
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Potential Games

Algorithm (Greedy).

1. Initialize s(©) arbitrarily.

2. Loop

3.  Find agent i, s, so that u;(s, 8(2) > u; (M)
4. Set st = (g, s"TV).

9. t=t+1

6. If no agent exists STOP

Lemma. The algorithm above reaches a pure Nash equilibrium.

Proof. Construct a directed graph with |S| vertices and an edge from s — s if
strategy profiles s, s” differ in one agent only, say i and u;(s") > u;(s).

e The graph has no cycles.
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Potential Games

Algorithm (Greedy).

1. Initialize s(©) arbitrarily.

2. Loop

3.  Find agent i, s, so that u;(s, 8(2) > u; (M)
4. Set st = (g, s"TV).

9. t=t+1

6. If no agent exists STOP

Lemma. The algorithm above reaches a pure Nash equilibrium.

Proof. Construct a directed graph with |S| vertices and an edge from s — s if
strategy profiles s, s” differ in one agent only, say i and u;(s") > wu;(s).

e The graph has no cycles.

e The algorithm reaches a sink vertex (no outgoing edges).
Intro to AGT



Congestion Games

A congestion game is defined by:

e n set of players.

e F set of edges/facilities/ bins.

e S; C 2% the set of strategies of player i.

e ¢.:{1,....,n} — R™ cost function of edge e.

For any s = (s1, ..., Sn)
e [.(s) number of players (load) that use edge e.

® ci(5) =) ., Cel(le) the cost function of player .
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Congestion Games

For this game:

n = {1,2} (red, green)

E are the edges of the network.
S; is all s — ¢ paths.

ce on edges.

Remark: Defined by Rosenthal in 1973. Capture atomic routing games!
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Congestion Games are Potential
Games

Theorem (Rosenthal 73"). Congestion Games are potential games.

Proof. We need to come up with a potential function!
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Congestion Games are Potential
Games

Theorem (Rosenthal 73"). Congestion Games are potential games.

Proof. We need to come up with a potential function!

Consider the function ®(s) = ) __. Zif;(i) ce(7).
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Congestion Games are Potential
Games

Theorem (Rosenthal 73"). Congestion Games are potential games.

Proof. We need to come up with a potential function!

Consider the function ®(s) = ) __. fo:(i) ce(7).
Fix agent ¢ strategy s, s’, where s, s’ differ on agent’s 7 strategy.
D(s) = iy S cel)+ Leesns 5t celi)+
¢ S) Zeésﬂs’ Zj 1 6( )+Ze€3\s —1 Ce ees’\s —1 CelJ
le(s le(s le(s .
® q)(sl) — Ze@sﬂs’ ZJ (1 ) C@( )—i_ZeEs’\s ZJ (1 ) Ce( )+Ze€3\s Z —( )CG(.])_I_

Missing terms
le(s le s’ .
+ Ze@s,s’ ZJ (1) Ce(']) + Ze%s,s’ Ejz(l ) Ce(j)
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Congestion Games are Potential
Games

Theorem (Rosenthal 73"). Congestion Games are potential games.

Proof. We need to come up with a potential function!

Consider the function ®(s) = ) __. Z; | ce( ).
Fix agent ¢ strategy s, s’, where s, s’ differ on agent’s 7 strategy.

¢ B(s) =3, . >ce(j)+ze€8\3,z
¢ O(5') = ey ST i)+ e
Same load le(s) =

Missing terms (same load)

le(s
—I_Zegés,s’ Z] (1) Ce(.])
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Congestion Games are Potential
Games

Theorem (Rosenthal 73"). Congestion Games are potential games.

CI)(s) _ q)(sl) — Zeés\s’ Ce(le(s)) — Zeés’\s CB(ZE(S,))

¢ (I)(S) — Zeésﬂs’
¢ (I)(Sl) — ZeEsﬁs’

Same load
Missing terms (same load)

le(s . o (s’ .
+ Ze@s,s’ ij(l) Ce(j) + Zegﬁsns’ E‘ljz(l ) Ce(j)
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Congestion Games are Potential

Proof cont.

Games

(I)(S) — (I)(S,) — ZeEs\s’ Ce(le(S)) — ZeEs’\s CB(IB(S,))

o ui(s) = Y.cons ce D)+ Xeeayr Celle(s)):

i ui(s,) — Zeésﬂs’ Ce

$')) + 2eeors Celle(s')).

Same load
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Congestion Games are Potential

Proof cont.

Games

(I)(S) — (I)(S,) — ZeEs\s’ Ce(le(S)) — ZeEs’\s CB(IE(S,))

o ui(s) = Y.cons ce D)+ Xeeayr Celle(s)):

i ’UJ@'(S,) — Zeésﬂs’ Ce

$')) + 2eeors Celle(s')).

Same load

= ui(s) - ui(S,) — Zeés\s’ ce(le(s)) — ZeEs’\s Ce(le(S’))

We conclude that ®(s) — ®(s') = u;(s) — u;(s).
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Congestion Games are Potential
Games

Proof cont. D(s) —D(s') = ) ecs\s’ ce(le(s)) — Y ecs/\s ce(le(s"))

o ui(s) = Y.cons ce D)+ Xeeayr Celle(s)):
o ui(5') = X cuny clef5) + X oeun s Celle(s).

Same load

= ui(s) - ui(S,) — Zeés\s’ ce(le(s)) — ZeEs’\s Ce(le(S’))

We conclude that ®(s) — ®(s') = u;(s) — u;(s).

Remark: Monderer and Shapley showed that potential games can be reduced to
congestion games!

Intro to AGT



An Algorithm for symmetric network
congestion games

Assumption: All players have the same endpoints S and T (and thus they
all have the same set of paths/strategies).

Basic idea: Min-cost flow reduction
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An Algorithm for symmetric network
congestion games

Assumption: All players have the same endpoints S and T (and thus they
all have the same set of paths/strategies).

Basic idea: Min-cost flow reduction

Definition (Min-cost flow). Given a graph G(V,E), a source s and a
sink t we would like to send flow d from s to t.

e Fach edge (u,v) has capacity c(u,v) and cost per flow unit a(u,v).
min Y f(u,v)-a(u,v)
e:(u,v)

s.t f(u,v) < c(u,v) for all edges (u,v) capacity cosntraints
f(u,v) = —f(v,u) for all edges (u, v)
Y f(u,w) =0 Vu #s,t flow conservation

Y f(sw)=dand ) _f(w,t)=4d
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An Algorithm for symmetric network
congestion games

Assumption: All players have the same endpoints S and T (and thus they
all have the same set of paths/strategies).

Basic idea: Min-cost flow reduction

Definitio1 nd a

sink t we Min-cost flow via LP!

e Fach

min Y f(u,v)-a(u,v)

e:(u,v)

s.t f(u,v) < c(u,v) for all edges (u,v) capacity cosntraints
f(u,v) = —f(v,u) for all edges (u, v)
Y f(u,w) =0 Vu #s,t flow conservation

Y f(sw)=dand ) _f(w,t)=4d

Intro to AGT



An Algorithm for symmetric network
congestion games; the reduction

Initial graph in the
Congestion Game.
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An Algorithm for symmetric network
congestion games; the reduction

Initial graph in the
Congestion Game.

Create another graph

with same vertices

and for each edge e := (u, v)

add n parallel edges of

capacity one and costs

In increasing order ¢, (1), ..., c.(n)
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An Algorithm for symmetric network
congestion games; the reduction

Initial graph in the . .
Congestion Game.
o\ e

The min-cost low minimizes
the potential ¢!

Create another graph / — '\

with same vertices ° o
and for each edge e := (u, v)

add n parallel edges of .

capacity one and costs
In increasing order ¢, (1), ..., c.(n)

Intro to AGT
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